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Abstract: To capture the interactive effects of
market liquidity regimes, price impacts, and
liability levels on investment strategies, a
Markov regime-switching mechanism is
incorporated into asset-liability management,
establishing a stochastic optimal control model
with state-dependent liability processes. The
results indicate that the liability growth rate
influences strategy selection by altering
investors’ risk tolerance and repayment
pressure: investors adopt conservative
strategies to hedge against repayment risk
under high growth rates, while pursuing
aggressive strategies for higher returns under
low growth rates. Regime transitions in market
liquidity moderate the aggressiveness of
strategies, and the joint effect of liabilities and
market frictions further influences the
adjustment speed and long-term robustness of
trading strategies.
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1. Introduction
Asset-liability management (ALM) is a core
function for financial institutions such as
insurance companies, pension funds, and banks.
Its primary objective is to achieve financial goals
through optimal asset allocation while meeting
current and future liability requirements.
Traditional ALM models are often based on the
assumption of a static market environment,
neglecting the impact of macroeconomic factors,
policy adjustments, and market sentiment on the
dynamic evolution of asset returns, volatility, and
liability demands. To more accurately capture
these characteristics, this paper introduces a
Markov regime-switching mechanism into the
ALM research framework.

et al. [1], Xie [2] and Li et al. [3] applied
this model to continuous-time ALM problems,

demonstrating that state-dependent asset returns
and liability dynamics significantly influence
optimal investment strategies. Wei et al. [4]
further extended regime-switching to multi-period
ALM problems, emphasizing the importance of
studying regime shifts for asset allocation and risk
management. Recently, Chen et al. [5] explored a
robust ALM problem under the CRRA utility
framework with regime-switching in a
continuous-time setting, effectively addressing
decision-making under model uncertainty.
With the continuous development of market
microstructure theory, incorporating market
frictions into asset-liability management has
become increasingly important. Most traditional
studies assume an ideal frictionless market,
overlooking real-world constraints such as
transaction costs, liquidity restrictions, and price
impacts. In practice, large trades by institutional
investors often lead to significant price distortions
[6-9]. Berry-Stöizle [10] first introduced market
frictions into the study of ALM for property
insurance. Berry-Stöizle [11] further revealed the
influence of liquidity risk and transaction costs on
asset allocation strategies. However, such
research primarily relies on numerical methods
and still lacks theoretical support in the form of
analytical solutions, especially in the context of
multi-asset portfolios and complex friction
scenarios.
In recent years, several studies have begun
integrating market frictions with
regime-switching mechanisms. Ma et al. [12],
working within the framework of Markovian
jump linear systems, solved for the optimal
strategy via coupled Riccati differential equations
and found that the type of price impact
significantly alters investors' trading behavior
patterns. Yan et al. [13] proposed a "target
tracking strategy," further revealing the opposing
mechanisms through which temporary and
permanent price impacts influence trading
behavior.
To date, no study has systematically incorporated
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liability management, a Markov regime-switching
mechanism, and market frictions involving both
temporary and permanent price impacts into a
unified analytical framework. Therefore, this
paper constructs an asset-liability management
model that integrates regime-switching and price
impacts. The model assumes that the dynamics of
assets follow a multi-dimensional geometric
Brownian motion, introduces a mean-reverting
return prediction signal to capture return
predictability in financial markets, and
simultaneously models the liability process as a
regime-dependent geometric Brownian motion.
Based on the dynamic programming principle,
this paper transforms the ALM problem into a
computational problem involving a system of
coupled Riccati differential equations, and
demonstrates that the value function and the
optimal feedback trading strategy can be
expressed through the solution of this system.

2. Model
Let Ω,ℱ,F,ℙ be a probability space endowed
with a filtration ℱ= ℱt t≥0 , which is generated by
an n -dimensional standard Brownian
motion (Wt

p)t≥0 , an m -dimensional standard
Brownian motion (Wt

f)t≥0 , and a continuous-time,
homogeneous, stationary Markov chain αt t≥0 ,
all of which are mutually independent. The
Markov chain αt t≥0 is defined on a finite,
canonical state space Ξ= e1,e2,⋅ ⋅ ⋅ ,ek , where
each state is represented by a unit vector ei (with
the i -th component being 1 and all others 0). Its
transition intensity matrix is given
byΠ:= πi,j 1≤i,j≤k where for each i≠j , πi,j≥0 , and
πi,i=− j≠i πi,j� . The matrix element πi,j represents
the instantaneous transition intensity of the
Markov chain αt t≥0 switching from state i to
state j.
We consider a financial market comprising one
risk-free asset and n risky assets. The price
dynamics of the risky assets are described by a
multi-dimensional geometric Brownian motion:
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where Pt= p1t,p2t,⋅ ⋅ ⋅ ,pnt
⊤ , diag Pt

denotes the diagonal matrix whose diagonal
elements are the components of tP ); Wt

P is
an n -dimensional ℱ -adapted Brownian motion

capturing market randomness; rf(αt) represents
the state-dependent risk-free rate;
andμpt αt :=rf(αt)1+B(αt)ft∈Rnandft=∈Rn×ndeno
te the state-dependent drift vector and volatility
coefficient matrix of the risky assets, respectively.
In Equation (1),ft= f1t,f2t,⋅ ⋅ ⋅ ,fnt

⊤ ∈Rm is a
vector of return predictors associated with the
state-dependent factor loading matrixB(αt)∈Rn×m,
whose dimension can differ from the number of
risky assets. The return predictor ft is assumed to
follow a stationary Ornstein-Uhlenbeck process:

dft=−Φ(αt)ftdt+σf(αt)dWt
f, (2)

Where Φ(αt)∈Rm×m is the state-dependent
mean-reversion matrix,Wt

f is an m-dimensional ℱ
-adapted Brownian motion which may be
correlated with Wt

P , and σf(αt)∈Rm×m is the
state-dependent volatility coefficient matrix of the
return predictors. Furthermore, thestate-dependent
covariance matrices for therisky assets and the
return predictors are given by
Σp(αt):=σp(αt)σp(αt)⊤ and Σf(αt):=σf (αt)σf(αt)⊤ ,
respectively.
Let the portfolio's positions in the risky assets be
denoted by xt= x1t,x2t,⋅ ⋅ ⋅ ,xnt

⊤ .Following
Gárleanu and Pedersen [8], the investor
dynamically adjusts the portfolio by choosing a
trading intensity τt t≥0 , which determines the
instantaneous rate of change of the positions
xt t≥0 as follows:

dxt=τtdt (3)
where τt≥0 is the time-dependent trading strategy,
reflecting the investor's dynamic portfolio
adjustment decisions under different market
regimes.
The company's asset value at time t is defined as
at , and it is assumed to satisfy the following
stochastic differential equation in a frictionless
market:
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t f t t t
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However, market frictions are prevalent in
real-world trading. For an instantaneous trading
strategy τt , it is assumed that the average
execution price increases by 1

2
Λ(αt)τt ,where

Λ(αt)∈Rn×n is a state-dependent symmetric
positive definite matrix (commonly referred to as
the multidimensional Kyle’s λ matrix), which
measures the level of transaction costs. Let P�t
denote the average execution price under the
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trading intensity τt. Then, we have:
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Therefore, combining with Equation (5), the
temporary transaction cost TC(τt)dt inducedby the
trading strategy τt is expressed as:
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Furthermore, trading activity simultaneously
induces both permanent and temporary price
impacts. When an investor submits a buy (or sell)
order, the order causes a permanent increase (or
decrease) in the price of the risky asset. To
capture this, a price distortion process Dt is
introduced, whose dynamics satisfy the following
equation:

dDt=−R(αt)Dtdt+C(αt)τtdt, (7)
where D0=0n×1 , C(αt)∈Rn×n is the
state-dependent permanent price impact matrix,
describing the permanent price change per unit of
trading intensity; and R(αt)∈Rn×n is the
state-dependent market resilience matrix,
characterizing the decay rate of the price
distortion.
In the presence of both permanent (Equation (7))
and temporary (Equation (6)) price impacts, the
dynamics of the firm's asset value in (4) further
follow the equation below:

dat=rf at−xt
⊤ 1 dt+xt

⊤ diagPt −1

&dPt+dDt −TC(τt)dt

&= rf(αt)at+xt
⊤ B(αt)ftdt−R(αt)

&Dt+C(αt)τt−
1
2
τt
⊤ Λ(αt)τt dt

&+xt
⊤ σP αt dWt

P,

(8)

In this equation, rf(αt)at captures the risk-free
return, while  ( ) ( )

t t t tdt  x B f R Dt+C(αt)τt
represents the return from risky assets
incorporating price distortion.The term
xt
⊤ σP(αt)dWt

P reflects changes in asset value due

to market volatility, and − 1
2 τt

⊤ Λ(αt)τt accounts
for the temporary transaction costs and the direct
capital outflow resulting from trade execution.
Following Xie [2], Zhang and Chen [14], as well
as Zhu et al. [15], this paper models the

company's liability process using a geometric
Brownian motion. Furthermore, it is assumed that
the liability process is influenced by a Markov
regime-switching mechanism, specified as
follows:

dlt=lt μl(αt)dt+σl(αt)dWt
l (9)

where Wt
l is an ℱ -adapted standard Brownian

motion, which may be correlated with Wt
p and

Wt
f . The correlation coefficient vectors are

denoted as ρpl∈Rn and ρfl∈Rn,respectively. To
simplify notation, we define:
Σl(αt):=σl(αt)2∈R , ( ) : ( )pl t p t pl Σ σ ρ
σl(αt)∈RnandΣfl(αt):=σf(αt)ρflσl(αt)∈Rm.
Then, combining Equation (8) and Equation (9),
the company's net asset value St:=at−lt satisfies:
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3. Objective Function
The investor's objective is to maximize the
discounted sum of the net asset value returns,
based on a local mean-variance criterion, over the
trading horizon t∈[0,T] . Accordingly, we
consider the following objective function:

J(t,x,D,f,l,ei;τ):
=Et ∫tTe−ρ(s−t) Es dSs−rf(αt)Ssds

&− γ
2
Vars dSs−rf(αt)Ssds

&=Et ∫tTe−ρ(s−t) rf(αt)−μl(αt) ls

&+xs
⊤ B(αt)fs−R(αt)Ds+C(αt)τs

&− 1
2
τs
⊤ Λ(αt)τs−

γ
2
xs

⊤ ΣP(αt)xs

&+Σl αt ls2−2xs
⊤ ΣP αt ls ds ,

(11)

and seek an optimal trading strategy τ∗ ∈A that
maximizes the objective function, i.e.,

J t,x,D,f,l,ei;τ∗

=max
τ∈A

J t,x,D,f,l,ei;τ (12)
subject to the following system constraints:

dxt=τtdt,
dft=−Φ(αt)ftdt+σf(αt)dWt

f,
dDt=−R(αt)Dtdt+C(αt)dt,
dlt=lt μl(αt)dt+σl(αt)dWt

l , (13)
Here, (αt)t≥0 is a continuous-time Markov chain
with transition intensity matrix Π , ρ>0 is the
discount rate, γ>0 is the risk aversion parameter,
and Et[⋅ ] and Vart[⋅ ] denote the conditional
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expectation and conditional variance operators,
respectively, given the information setℱt at time
t.
Note: To simplify notation, the objective function
(11) is denoted
as J(t,x,D,f,l,i;τ∗ ):=J(t,x,D,f,l,ei;τ∗ ) , and the
value function is denoted as
V(t,x,D,f,l,i):=V(t,x,D,f,l,ei) Model parameters
under state i are uniformly represented
as: Bi:=B(ei) , ri:=r(ei) , Ci:=C(ei) , Λi:=Λ(ei) ,
Σi
f:=Σf(ei) , Σi

p:=Σp(ei) , Σil:=Σl(ei) , Φi:=Φ(ei) ,
Ri:=R(ei),μil:=μl(ei),Σi

fl:=Σfl(ei),Σi
pl:=Σpl(ei).Accord

ing to dynamic programming theory, the
Hamilton-Jacobi-Bellman (HJB)equation
corresponding to the value function V is given by:
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where,
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the terminal condition isV T,x,D,f,l,i =0.

4. Study of the Optimal Trading Strategy
Following Ma G et al. [12], the solution to the
aforementioned HJB equation (14) can be
obtained by solving a system of coupled Riccati
equations. Denote the time derivative of a
function F(t) as F� t .
Theorem 1 The solution to the HJB equation (14)
admits the following quadratic form:
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, , , , , , ,c l

l l
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Where,

Q=

−Axx t,i AxD t,i Axf t,i Axl t,i

AxD
⊤ t,i ADD t,i ADf t,i ADl t,i

Axf
⊤ t,i ADf

⊤ t,i Aff t,i Afl t,i

Axl
⊤ t,i ADl

⊤ t,i Afl
⊤ t,i All t,i

,

and
Axx(t,i) , Aff(t,i) , All(t,i) , ADD(t,i) , Axf(t,i) , AxD(t,i) ,
ADf(t,i) ,Axl(t,i) ,ADl(t,i) ,Afl(t,i) ,Al(t,i) ,Ac(t,i) are
given by the solution to the following system of
coupled Riccati differential equations:

&A� xx(t,i)=ρAxx(t,i)−γΣi
p

&− j=1
m πij� Axx(t,j)+Ex(t,i)⊤ Λi−1Ex(t,i),

&A� xD(t,i)=ρAxD(t,i)+ri1n+Ri
&+AxD(t,i)Ri− j=1

m πij� AxD(t,j)

&−Ex(t,i)⊤ Λi−1ED(t,i),

&A� DD(t,i)=ρADD(t,i)+Ri
⊤ ADD(t,i)

&+ADD(t,i)Ri− j=1
m πij� ADD(t,j)

&−ED(t,i)⊤ Λi−1ED(t,i),

&A� ff(t,i)=ρAff(t,i)+Φi
⊤ Aff(t,i)

&+Aff(t,i)⊤ Φi− j=1
m πij� Aff(t,j)

&−Ef(t,i)⊤ Λi−1Ef(t,i),
&A� xf(t,i)=ρAxf(t,i)+Axf(t,i)Φi

&−Bi− j=1
m πij� Axf(t,j)

&−Ex(t,i)⊤ Λi−1Ef(t,i),

&A� Df(t,i)=ρADf(t,i)+Ri
⊤ ADf(t,i)

&+ADf(t,i)Φi− j=1
m πij� ADf(t,j)

&−ED(t,i)⊤ Λi−1Ef(t,i),
&A� ll(t,i)=ρAll(t,i)+γΣil−2μilAll(t,i)
&−All(t,i)Σil− j=1

m πij� All(t,j)

&−El(t,i)⊤ Λi−1El(t,i),
&A� xl(t,i)=ρAxl(t,i)−Axl(t,i)μil

&−γΣi
pl− j=1

m πij� Axl(t,j)

&−Ex(t,i)⊤ Λi−1El(t,i),
&A� Dl(t,i)=ρADf(t,i)−ADl(t,i)μil

&+Ri
⊤ ADl(t,i)− j=1

m πij� ADl(t,j)

&−ED(t,i)⊤ Λi−1El(t,i),
&A� fl(t,i)=ρAfl(t,i)+Afl(t,i)Φi
&−Afl(t,i)μil− j=1

m πij� Afl(t,j)

&−Ef(t,i)⊤ Λi−1El(t,i),
&A� l(t,i)=ρAl(t,i)−ri1n+μil1n
&−Al(t,i)μil−Afl(t,i)⊤ Σi

fl

&− j=1
m πij� Axl(t,j),

&A� c(t,i)=ρAc(t,i)−
1
2
tr(Aff(t,i)Σi

f)
&− j=1

m πij� Ac(t,j).

(17)
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where
Ex(t,i):&=Ci

⊤ −Axx(t,i)

+Ci
⊤ AxD(t,i)⊤ ,

ED(t,i):&=AxD(t,i)+Ci
⊤ ADD(t,i),

Ef(t,i):&=Axf(t,i)+Ci
⊤ ADf(t,i),

El(t,i):&=Axl(t,i)+Ci
⊤ ADl(t,i).

(18)

The terminal condition for system (15) is
Axx(T,i)=0n×n , ADD(T,i)=0n×n , AxD(T,i)=0n×n ,
Aff(T,i)=0m×m , Axf(T,i)=0n×m , ( , )D f n mT i A 0

Axl(T,i)=0n×1 ,ADl(T,i)=0n×1 ,Afl(T,i)=0m×1 ,All(T,i)=
( , )lA T i  Ac(T,i)=0.

Accordingly, the optimal trading strategy can be
derived as:

1
( , , , , , )

( , ) ( , )

( , ) ( , )
i x D

f l

t l i
t i t i

t i t i l



 

  

τ x D f
Λ E x E D

E f E
(19)

Proof For i=1,⋅ ⋅ ⋅ ,k , taking the first-order
condition with respect to τ in the HJB equation
(14)

yields τ=Λi−1 Ci
⊤ x+  , , , , ,V t l i


x D f
x

+Ci
⊤ ∂V t,x,D,f,l,i

∂D
,We now postulate a solution for

V of the form given in (16), where the symmetric
matrices Axx(t,i)、Aff(t,i)、ADD(t,i) ; the matrices
Axf(t,i)、AxD(t,i)、ADf(t,i)、Axl(t,i)、ADl(t,i)、Afl(t,i);
and the scalar functions All(t,i)、Al(t,i)、Ac are all
state-dependent parameters to be determined.
Substituting this ansatz into the first-order
condition and then back into the HJB equation
(14), we derive the system of coupled Riccati
equations (17) and the optimal trading strateg τ∗
(19) by matching the coefficients of the terms
x⊤ ⋅ x、f⊤ ⋅ f、D⊤ ⋅ D、l⊤ ⋅ l、x⊤ ⋅ f、
x⊤ ⋅ D、 x⊤ ⋅ l、D⊤ ⋅ f、D⊤ ⋅ l、
f⊤ ⋅ l,and the constant term.
This theorem shows that, within a framework
accounting for market liquidity, the optimal
investment decision problem can be transformed
into solving a system of coupled Riccati equations.
By solving system (17) and determining the
analytical forms of the coefficient matrices, we
obtain the explicit optimal trading strategy (19).
This strategy exhibits a clear linear feedback form,
where the trading intensity is determined by the
current holdings x, the price distortion process D,
the return prediction signal f , the liability level l ,

and the liquidity state, with dynamic adjustment
achieved through the time-varying coefficient
matrices Ex,ED,Ef,El .
When Ci=Ri=0n×n ( i=1,⋅ ⋅ ⋅ ,k ), the HJB
equation (14) simplifies significantly. Under this
condition, market frictions arise only from linear
temporary price impacts. From the dynamics in
equation (7), if Ci=Ri=0n×n for all i,then Dt=0n×1.
The following corollary provides a classical
analytical solution to the HJB equation (14) under
this specific condition.
Corollary 1 When Ci=Ri=0n×n, the solution to the
HJB equation (14) is given by:

2

( , , , , )
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2 2
1 ( , ) ( , ) ( , )
2

( , ) ( , ) ( , )
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np np
xx ff
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fl l c

V t l i
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t i l A t i l A t i

  

  
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x f

x A x f A f

x A f x A

f A ，

(20)

where
Axx
np(t,i) ,Aff

np(t,i) ,All
np(t,i) ,Axf

np(t,i) ,Axl
np(t,i) ,Afl

np(t,i) ,
Al
np(t,i) ,Ac

np(t,i) is the solution to the following
system of coupled equations:

&A� fl
np(t,i)=ρAfl

np(t,i)+Φi
⊤ Afl

np(t,i)

&−Afl
np(t,i)μil− j=1

m πij� Afl
np(t,j)

&−Axf
np(t,i)⊤ Λi−1Axl

np(t,i),

&A� l
np(t,i)=ρAl

np(t,i)−ri1n+μil1n
&−μilAl

np(t,i)−Afl
np(t,i)⊤ Σi

fl

&− j=1
m πij� Al

np(t,j),

&A� c
np(t,i)=ρAc

np(t,i)− 1
2
tr(Aff

np(t,i)Σi
f)

− j=1
m πij� Ac

np t,j .

&A� xx
np
xx(t,i)=ρAxx

np(t,i)−γΣi
p

&− j=1
m πij� Axx

np(t,j)+Axx
np(t,i)⊤ Λi−1Axx

np(t,i),

&A� ff
np(t,i)=ρAff

np(t,i)+Φi
⊤ Aff

np(t,i)

&+Aff
np(t,i)⊤ Φi− j=1

m πij� Aff
np(t,j)

&−Axf
np(t,i)⊤ Λi−1Axf(t,i),

&A� xf
np(t,i)=ρAxf

np(t,i)+Axf
np(t,i)Φi−Bi

&− j=1
m πij� Axf

np(t,j)+Axx
np(t,i)⊤ Λi−1Axf

np(t,i),

&A� ll
np(t,i)=ρAll

np(t,i)+γΣil−2μilAll
np(t,i)

&−All
np(t,i)Σil− j=1

m πij� All
np(t,j)

&−Axl
np(t,i)⊤ Λi−1Axl

np(t,i),
&A� xl

np(t,i)=ρAxl
np(t,i)−Axl

np(t,i)μil

&−γΣi
pl− j=1

m πij� Axl
np(t,j)

&+Axx
np(t,i)⊤ Λi−1Axl

np(t,i),

(21)

the terminal condition is
Axx
np(T,i)=0n×n , Aff

np(T,i)=0m×m , Axf
np(T,i)=0n×m ,

( , )np
xl T i A 0n×1 , Afl

np(T,i)=0m×1 ,
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( , ) ( , )n p n p
l l lA T i A T i  Ac

np(T,i)=0.
Accordingly, the optimal trading strategy can be
derived as:

*

1

.

( , )

(

( ,

,

, , , )

( , ) )

np
xx

np np
xf x

n

i

l

p

t i

t

t l i

i t i l

  

  

τ

A x

x f

Λ

A f A
(22)

We conclude this section by presenting a
verification theorem.
Theorem 2 Suppose the coupled Riccati system
(17) (or (21)) admits a classical solution. Then the
value function V in (16) (or Vnp ) in (20)) is the
solution to the objective function (12), and the
investor's optimal trading strategy given in (19)
(or (22)) solves the optimization problem (12).
Proof Since the value function in (17) is a
quadratic function of the state variables (x,f,D,l),
we follow the standard proof of the verification
theorem [16] to show that under the optimal
trading strategy τ∗ , the processes (xt)t≥0 in (3)
and (Dt)t≥0 in (7) admit strong solutions.
Specifically, we need to verify that the optimal
trading strategyτ∗ ∈A.
The process (αt)t≥0 is a finite-state Markov
regime-switching process, independent of the
Brownian motion (Wt

f)t≥0 . From equation (2), for
any p≥1 , the process ft belongs to the space
Lℱ
p (0,T;Rm) , i.e., ft is an ℱt -adapted process
taking values in Rm and satisfies
E 0

T ft p� ​ ​ dt <∞ which indicates that the
expectation of the p -th moment of ft integrated
over 0,T is finite.
As for the liability process lt , the coefficients μil
and σil are bounded and adapted, and
independent of the Brownian motion(Wt

l)t≥0. From
equation (9), for any p≥1, the process(lt )belongs
to the space Lℱ

p (0,T;Rn) .That is, lt is an
ℱt -adapted process taking values in Rn ,
satisfyingE 0

T lt p� ​ ​ dt <∞.
Next, we substitute the expression for τ∗ from
(19) into equations (3) and (7), respectively. The
resulting dynamics of the variables (xt)t≥0 and
(Dt)t≥0under the optimal trading strategy are given
by
dxt

∗ = Λi−1 Ci−Axx(t,i) +Ci
⊤ AxD

⊤ (t,i) xt
∗ +Λi−1 AxD(t,i)+

Ci
⊤ ADD(t,i) Dt

∗ +Λi−1 Axf(t,i)+Ci
⊤ ADf(t,i) f

+Λi−1 Axl(t,i)+Ci
⊤ ADl(t,i) lt dt,dDt

∗ =

  1 * 1( , ) ( , )
i i i xx i xD t i i

t i t i    C ΛC A C A x CΛ

AxD(t,i) +Ci
⊤ ADD(t,i) −Ri Dt

∗ +CiΛi−1 Axf(t,i)

  1( , ) ( , ) ( , )i Df t i i xl i Dlt i t i t i C A f C A AΛ C

lt dt.
We now combine xt

∗ and Dt
∗ into a joint

vector: Yt
∗ =

&xt
∗

&Dt
∗

,Define the system matrix

and vectors as follows:

J(t,i)=
Λi−1Ex(t,i) Λi−1Ex(t,i)
CiΛi−1ED(t,i) CiΛi−1ED(t,i)−Ri

j(t,i)=
Λi−1Ef(t,i)
CiΛi−1Ef(t,i)

,g(t,i)=
Λi−1El(t,i)
CiΛi−1El(t,i)

,

Then the entire coupled system becomes:

dYt
∗ = J(t,i)Yt

∗ +j(t,i)ft+g(t,i)lt dt,Y0
∗ =

&x0
&0n×1

,T

his constitutes a linear ordinary differential
equation with stochastic driving terms. Since the
system matrix, the process ft , and lt are all
adapted and Lp -integrable, it follows from the
existence and uniqueness theory for ordinary
differential equations that this system admits a
unique strong solution.

5. Numerical Simulations
In this section on numerical simulations,
following Ma et al. [12], we assume the model
satisfies:Λi=λiΣi

p ,Ci=CiΣi
p ,Ri=Ri(Σi

p)−1 , where for
i=1,⋅ ⋅ ⋅ ,k,λi、Ci、Ri>0. We consider two risky
assets, i.e., n
=m=k=2.
Let el and eh denote the low ( l) and high (h)
liquidity states, respectively. The low and high
liquidity states are characterized by parameters
satisfying λl≥λh、Cl≥Ch、Rl≤Rh. This setup aims to
analyze the impact of price impacts and liability
levels on the investor's trading strategy under the
combined influence of liabilities and regime
switching.
Referring to the parameter settings in Ma et al.
[12], the baseline parameters are configured as
follows: T=1、 γ=0.4、 ρ=0.08、 rl=rh=0.01、
x0= 0,0 ⊤ 、f0= 1,1 ⊤ 、l0= 1,1 ⊤ 、Bl=Bh=I2、

Φl=Φh=I2、Σi
f=02×2、Σil=0.01、Σi

pl= &0.015
&0.015 、

Σl
p=Σh

p= 0.04 0.01
0.01 0.04 and Π= −0.05 0.05

0.1 −0.1 , the
model parameters λl、λh、Cl、Ch、Rl、Rh、μl、
μh will be specified in subsequent analyses to
investigate the impact of different liquidity
parameters on the investor's optimal trading
strategy.
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5.1 Price Impact Effects Under Different
Liquidity Regimes
In this section, we first analyze the effect of
temporary price impacts ( λl , λh ), followed by a
discussion of the effects of permanent price
impacts ( Cl , Ch ) and market resilience rates
(Rl ,Rh ). To facilitate comparison with Ma et al.
[12], the model parameters λl、λh、Cl、Ch、Rl、
Rh are set consistent with their study.
5.1.1 Temporary price impact
Setting the parameters
as λl=1 , λh=0.1 , Cl=Ch=4×10−3 , Rl=Rh=0.01 ,
μl=μh=0.04, Figure 1 displays the optimal trading
strategy τ∗ for Asset 1 and the corresponding
sample path of the Markov chain over time.
For comparison, we also present the trading
strategies for Asset 1 under the hypothetical
scenarios of remaining permanently in the
low-liquidity regime ( τl ) and the high-liquidity
regime (τh) throughout the entire trading horizon.
These serve as benchmarks for assessing whether
the trading strategy under regime switching is
aggressive or conservative relative to the
single-regime cases.
The results in Figure 1 show that, under
temporary price impact, the investor trades Asset
1 more slowly in the low-liquidity state compared
to the permanent low-liquidity scenario ( τ∗ <τl ),
indicating relatively conservative behavior.
Conversely, in the high-liquidity state, the
investor trades faster than in the permanent
high-liquidity scenario ( τ∗ >τh ), showing more
aggressive trading. This behavior is directly
related to market friction costs: low liquidity
corresponds to higher transaction cost matrices,
which dampen the willingness to adjust positions.
The introduction of liabilities alters the risk
characteristics of the trading strategy. In the
low-liquidity state, the growth of liabilities
exacerbates the volatility of net assets, compelling
the investor to increase trading speed to
dynamically hedge liability risk. In the
high-liquidity state, although transaction costs are
lower, the presence of liabilities prompts the
investor to further scale up trading, actively
adjusting positions to address the long-term
solvency pressure brought by liabilities.
Compared to the liability-free study in Ma et al.
[12], the dual effects of regime switching and
liabilities in our model lead to a smoother
evolution of the trading speed over time. This
result indicates that the introduction of liabilities

can mitigate the investor's overreaction to
short-term market fluctuations, thereby steering
the trading strategy toward long-term stability.
5.1.2 Permanent price impact
The magnitude of the permanent price impact is
jointly determined by the permanent price impact
coefficients ( Cl , Ch ) and the market resilience
rates (Rl,Rh). Below, we examine the influence of
these two factors on the optimal trading strategy
separately.

Figure 1. Optimal Trading Strategy τ∗ (State
Transitions Determined by Temporary Price

Impact)

.

Figure 2. Optimal Trading Strategy τ∗ (State
Transitions Determined by Permanent Price

Impact)
For Figure 2, the parameters are set as
λl=λh=0.1 , Cl=4×10−3 , Ch=1×10−3 , Rl=Rh=0.01 ,
μl=μh=0.04. It can be observed that the investor's
trading behavior is more aggressive in the
low-liquidity state compared to the high-liquidity
state. This occurs because, in a low-liquidity
environment, large trades induce significant
permanent price impacts. The investor can exploit
this by trading actively to create long-term price
trends (e.g., prices permanently increase after
buying), thereby achieving higher expected
returns. This incentive to "influence prices
through trading" partially offsets the increased
transaction costs associated with low liquidity,
encouraging the adoption of a more aggressive
trading strategy.
Next, we consider the impact of the market
resilience rate on the investor's trading strategy.
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Under the parameter settings
λl=λh=0.1 , Cl=Ch=4×10−3 , Rl=0.01 , Rh=0.06 ,
μl=μh=0.04 , Figure 3 shows that the investor
adopts a more aggressive trading strategy in the
low-liquidity state. Due to the lower market
resilience rate (Rl ), the permanent price impact
caused by the investor's trading activity persists in
the market for a longer duration, thereby
enhancing the sustainability of the expected
investment returns. Conversely, the higher
resilience rate ( Rh ) causes the price impact to
dissipate quickly, weakening the long-term return
expectations from trading. Consequently, the
investor tends to adopt a more short-term and
cautious trading approach to avoid potential
losses that could arise from price reversals.
Compared to the study of liability-free trading
strategies in Ma et al. [12], the presence of
liabilities prompts investors to pay greater
attention to risk management across different time
horizons. The short-term effects of permanent
price impacts are diluted by the long-term
solvency pressure imposed by liabilities;
consequently, their influence on the slope of the
trading strategy (i.e., the rate of change of the
strategy over time) is relatively minor. Within the
Markov regime-switching framework, investors
should anticipate the possibility of transitions
from low-liquidity to high-liquidity states. This
uncertainty drives investors to undertake more
proactive, preventive adjustments in the current
state based on expectations of future regimes.

5.2 Impact of Liability Growth Rate
To highlight the independent effect of liability
dynamics on the trading strategy, we analyze the
following two market liquidity scenarios
separately. The first scenario assumes a constant
market liquidity state, where the parameters
determining market liquidity, remain fixed
(whether at a high or low level, their values are
constant). In this case, only the liability growth
rate is influenced by Markov regime switching.
The second scenario allows for changes in the
market liquidity state, meaning the parameters,
take different values in the high and low states.
Here, the liability growth rate is also affected by
Markov regime switching but cannot, in turn,
alter the inherent market liquidity level.
It is important to note that, in both scenarios, the
liability growth rate influences trading decisions
solely by altering the investor's solvency pressure.
The market liquidity level is determined by
market-specific parameters such as λ,C,R, and is

independent of the liability growth rate.
When the parameters are set as
l  λh=0.1 , Cl=Ch=4×10−3 , Rl=Rh=0.01 , μl=1 ,
μh=0.04, market liquidity remains constant. In this
case, the dynamic evolution of the optimal trading
strategy in Figure 4 is entirely driven by the
liability growth rate. Under a low liability growth
rate, investors face lighter long-term solvency
pressure, leading to significantly higher risk
tolerance. The strategy curve exhibits a steep
upward trend, characterized by high-frequency
position adjustments and active exploitation of
market opportunities. In contrast, under a high
liability growth rate, persistent solvency pressure
forces investors to prioritize risk control,
substantially reducing trading frequency and
displaying a clearly conservative tendency.
When the market is in different liquidity states,
with parameters set as
λl=1 , λh=0.1 , Cl=4×10−3 , Ch=1×10−3 , Rl=0.01 ,
Rh=0.06 , μl=1 , μh=0.04 , Figure 5 illustrates the
combined impact of the liability growth rate and
the liquidity state on the trading strategy. On one
hand, the liquidity state determines the baseline
trading tendency. In the low-liquidity state, where
market frictions and transaction costs are high, the
investor's trading strategy is relatively
conservative (  τ τl ). Conversely, in the
high-liquidity state, where market transaction
costs are low, trading is more aggressive (τ∗ >τh).
On the other hand, the liability growth rate further
moderates this behavior. Under a low liability
growth rate, investors face lighter financial
pressure and exhibit higher risk tolerance, leading
to more aggressive strategies (such as
high-frequency position adjustments) to capture
market opportunities. In contrast, under a high
liability growth rate, long-term solvency pressure
compels investors to prioritize risk control to
avoid exacerbating the gap between net assets and
liabilities due to market volatility.

Figure 3. Optimal Trading Strategy τ∗

(Market Resilience Rate)
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Figure 4. Optimal Trading Strategy under
Constant Liquidity Regime τ∗ (Only
Liability Growth Rate Subject to State

Transitions)
Analysis under both states indicates that the
liability growth rate influences the trading
strategy by altering risk tolerance and solvency
pressure, while market liquidity, as a given
environmental factor, determines the
manifestation of this influence (such as the degree
of aggressiveness or conservatism).

6. Conclusion
This paper constructs a dynamic Asset-Liability
Management (ALM) model that integrates
Markov regime switching, market frictions, and
liability management, systematically investigating
the optimal ALM strategies for financial
institutions in complex market environments.
Theoretical analysis demonstrates that the optimal
trading strategy can be determined via the
solution to a system of coupled Riccati
differential equations. This strategy exhibits a
state-dependent feedback form, enabling a
dynamic trade-off between risk hedging and
return objectives in stochastic market settings.

Figure 5. Optimal Trading Strategy τ∗ under
Regime-Switching Liquidity (Both Liability
Growth Rate and Liquidity Parameters

Subject to State Transitions)
Numerical simulations reveal that the liability
growth rate independently influences investor

behavior, distinct from the market liquidity state.
A high liability growth rate compels investors to
adopt conservative strategies to control solvency
risk, whereas a low liability growth rate
incentivizes the pursuit of excess returns.
Specifically, under a combination of low liquidity
and high liability growth rate, the joint effect of
market frictions and liability pressure further
reinforces risk-averse behavior. Conversely, in
states characterized by high liquidity and low
liability growth rate, investors are more inclined
to adjust positions actively to capture return
opportunities.
This study elucidates trader behavior under
varying liability rates and market liquidity
conditions, providing theoretical support for
financial institutions to optimize asset allocation
and hedge liability risks in regime-switching
market environments. Future work could extend
this framework to more complex scenarios
involving multiple asset classes, non-Gaussian
noise, and other realistic market features.
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