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Abstract: This study addresses the limitations
of traditional motion capture systems, such as
high cost, insufficient robustness, and poor
real-time performance. It aims to develop a
low-cost, highly robust real-time motion
capture prototype system. The system is
designed to achieve a joint position estimation
error of no more than S5cm under occlusion
and complex lighting conditions, with a delay
of <50 ms to meet real-time interaction needs,
and to verify 1-2 application scenarios like
virtual human animation generation or gait
analysis. Research methods include multi-
angle data collection and preprocessing,
adoption of a model framework integrating
two-stream graph convolution, adversarial
learning and trajectory space, as well as
model compression (pruning, quantization)
and hardware acceleration (GPU, TPU) to
improve real-time performance. The system
advances cross-disciplinary research on
multimodal perception and human motion
modeling, and provides technical support for
film/animation production, VR/AR, sports
analysis and medical rehabilitation.
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1. Introduction

Traditional motion capture systems have
prominent limitations in practical use such as
cumbersome processes, high costs and poor
flexibility. Optical systems like Vicon and
OptiTrack need markers and only suit laboratory
environments inertial systems such as XSens
have cumulative errors and visual systems are
sensitive to lighting conditions. These issues

restrict  their application in film game
development, sports analysis and medical
rehabilitation.

To solve these problems, this study focuses on
developing a real-time motion capture system
based on deep learning. It aims to build a low-
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cost highly robust prototype system with joint
position estimation error no more than Scm under
occlusion and complex lighting and system delay
no more than 50 ms while verifying 1 to 2
application scenarios like wvirtual human
animation generation or gait analysis!!l. This
research promotes interdisciplinary studies on
multimodal perception, human motion modeling
and deep learning and provides technical support
for related industries!?!.

2. Data Collection and Preprocessing for
Motion Capture

Data collection and preprocessing form the
foundational step for building a reliable real-time
motion capture system as high-quality data
directly influences the accuracy of subsequent
deep learning models. For data collection, high-
resolution RGB or RGB-D cameras are adopted
to capture human motion video data. To ensure
data diversity, the collection follows a multi-
angle and multi-sample strategy. Cameras are
placed at multiple positions such as front side
and 45-degree angles to record movements and
samples are collected from subjects of different
ages and body types performing various actions,
including walking, running and jumping. This
covers complex motion scenarios and reduces
bias from single-angle or limited-sample datal®l.
For data preprocessing, a series of steps are
implemented to optimize data quality. First, the
collected video data are annotated using tools
like OpenPose to mark the 2D or 3D coordinates
of key human joints such as the head, shoulders,
elbows, hands, knees and ankles. Then irrelevant
regions in the video frames are cropped to focus
on the human motion area and reduce redundant
information. Next, data augmentation techniques
are applied, including adjusting brightness and
contrast to simulate complex lighting conditions
and adding slight rotations or scaling to enhance
the model's generalization ability. Finally, the
annotated joint coordinates are normalized to a
unified scale which eliminates errors caused by
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different camera resolutions or shooting distances.

A standard dataset is also constructed by dividing
the processed data into training, validation and
test sets. This dataset contains various motion
examples and provides a reliable basis for model
training and performance evaluation. These
collection and preprocessing steps effectively
improve the efficiency and accuracy of model
training, laying a solid foundation for the
precision of real-time motion capturef®,

3. Design and Training of Deep Learning
Models for Motion Capture

3.1 Model Architecture Design

The deep learning model for motion capture is
designed to prioritize both pose estimation
accuracy and adaptability to complex scenarios,
leveraging human skeleton geometry and motion
spatio-temporal features. The core framework is
built around a two-stream graph convolutional
network, which aligns with the inherent graph
structure of human skeletons. One stream focuses
on extracting spatial features of static skeleton
key points, capturing geometric relationships
between joints such as the relative distances
between shoulders, elbows, and wrists. The other
stream processes temporal motion features, using
frame difference calculations and velocity
analysis to track dynamic changes in movements
like arm swings or leg stridesll.

To enhance global motion feature learning,
adversarial learning is integrated into the two-
stream structure. A discriminator is trained
alongside the main model to distinguish between
features from partial motion clips and complete
motion sequences. This drives the main model to
learn latent global motion patterns even when
only partial video data is available. Additionally,
the trajectory space concept is introduced to
convert raw pose space data into trajectory space,
enabling spatio-temporal convolutional layers to
better mine long-term temporal dependencies. A
multi-scale pose fusion module is also added to
integrate features from different pose resolution
levels, further boosting the model's ability to

represent detailed and overall motion information.

Reference is made to advanced pose estimation
models like HRNet and ViTPose to optimize the
initial feature extraction stage, ensuring precise
localization of key joints such as the head, knees,
and ankles!”].

3.2 Model Training Strategy
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Model training relies on the preprocessed motion
dataset, which is split into training, validation,
and test sets in a rational ratio to avoid overfitting
and ensure generalization. The PyTorch
framework is selected for implementation due to
its flexibility in customizing network structures
and efficient support for dynamic computation
graphs. Mean squared error is used as the
primary loss function to minimize the gap
between predicted and annotated joint
coordinates, guaranteeing high pose estimation
accuracy!®l,

Systematic hyperparameter tuning is conducted,
including adjusting learning rate, batch size, and
training epochs. A learning rate scheduler is
applied to gradually reduce the learning rate
during training, preventing convergence to local
minima. Cross-validation is also adopted-the
training set is divided into multiple subsets, and
the model is trained on different subset
combinations to verify its stability across diverse
data distributions!*. To address potential data
scarcity, generative adversarial networks are used
for motion data augmentation, generating
realistic synthetic motion sequences that
supplement the original dataset and enhance the
model's robustness to various motion stylesl.

3.3 Model
Performance
Real-time operation is critical for the motion
capture system, so the trained model undergoes
targeted optimization to reduce computational
complexity while preserving accuracy. Model
compression techniques are employed: network
pruning removes redundant neurons and
connections with minimal impact on prediction
results, and quantization converts 32-bit floating-
point parameters to lower-bit integers, cutting
memory usage and computation time.
Knowledge distillation is also applied, where a
lightweight "student" model learns from a pre-
trained large "teacher" model, transferring
effective feature representation capabilities while
maintaining a compact structure.

Hardware acceleration 1is integrated into
deployment, using GPUs or TPUs to parallelize
computationally intensive tasks such as
convolutional operations and spatio-temporal
feature fusion. The optimized model is tested for
inference speed, ensuring it processes at least 30
frames per second-meeting the real-time
interaction requirement for motion capture.
These optimizations balance model performance

Optimization for Real-Time

Copyright @ STEMM Institute Press



Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 3 No. 4, 2025 133

and computational efficiency, laying a solid
foundation for the entire system's real-time
operation.

4. Implementation and Optimization of Real-
time Motion Capture System

4.1 System Architecture Implementation

The real-time motion capture system is
implemented with a modular structure that aligns
with the technical route outlined in the research,
ensuring clear functionality division and
seamless integration. Four core modules form the
closed-loop workflow of the system.

The data acquisition module uses high-resolution
RGB or RGB-D cameras as the main input
devices. Cameras are placed at multiple angles,
including front side and 45-degree positions, to
fully cover human motion ranges. The module is
set to capture video streams at 30 frames per
second, which meets the basic requirement for
smooth real-time motion tracking. Low-latency
data transmission protocols are adopted to send
raw video frames to the next stage without
obvious delays.

The real-time data processing module focuses on
efficiency to avoid bottlenecks. It performs rapid
operations such as cropping video frames to
retain only the human motion area normalizing
pixel values to a unified scale and conducting
basic noise reduction to eliminate minor image
flaws. These operations rely on lightweight
image processing tools to ensure speed.

The deep learning model module integrates the
pre-trained two-stream graph convolutional
network along with adversarial learning and
trajectory space features. The module uses a
framework-compatible inference engine to
connect with the data processing module. It takes
processed frame data as input and outputs 2D or
3D coordinates of human key joints (such as
head, shoulders, elbows, hands, knees and ankles)
in real time and sends these coordinates to the
final module.

The user interface module is designed for
intuitive visualization and monitoring. It displays
the captured human skeleton in real time,
overlays the skeleton on the original video for
easy comparison and shows key performance
indicators like joint position error and system
delay. Users can also adjust basic parameters
such as camera angles and model inference speed
to fit different application scenarios.
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4.2 Optimization of Real-Time Processing
Pipeline

To achieve the system delay requirement of no
more than 50ms, the real-time processing
pipeline is optimized in multiple aspects to
reduce latency while maintaining accuracy.
Video stream input optimization minimizes
delays from capture to transmission. Cameras use
efficient video coding formats like H.264 which
balances compression ratio and decoding speed.
This reduces the amount of transmitted data
without lowering image quality. A frame
synchronization mechanism is added to align
data from multiple cameras ensuring frames
captured at the same time are processed together
and avoiding temporal mismatches that could
affect skeleton reconstruction accuracy.

Model inference acceleration builds on earlier
model compression efforts including pruning and
quantization. The deployed model is further
optimized with inference engines suitable for
real-time tasks. These engines optimize the
model's computational graph, fuse redundant
layers and support precision adjustment such as
switching to FP16 precision to speed up
calculations without significant accuracy loss.
GPU or TPU resources are used for parallel
computing handling tasks like multi-frame
feature extraction and joint coordinate calculation
simultaneously to reduce single-frame processing
time.

Dynamic latency monitoring and adjustment
maintains stable performance. A real-time
latency tracker is integrated into the pipeline to
measure the time from frame capture to skeleton
output. If the delay exceeds 50 ms, the system
automatically makes adaptive adjustments such
as temporarily simplifying the model's feature
extraction layer or reducing the frame rate to 25
FPS (still enough for smooth motion) until the
delay returns to an acceptable range. This
balances speed and accuracy to keep the system
responsive in different computing environments.

4.3 Enhancement of System Robustness and
Adaptability

Robustness to complex scenarios like occlusion
and variable lighting is essential for practical use,
so the system is enhanced with targeted
mechanisms while keeping real-time
performance intact.

For occlusion handling, the system leverages the
temporal continuity of human motion. A
lightweight LSTM layer is added to the model
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module to track the trajectory of key joints across
consecutive frames. When a joint (such as a hand
blocked by the torso) is occluded in one frame,
the LSTM uses the joint's positions in previous
and subsequent frames to predict its missing
coordinates. Human kinematic constraints are
also applied for refinement such as limiting
elbow joint angle ranges to ensure predicted
positions are physically reasonable. This method
avoids complex 3D reconstruction algorithms
that would increase latency, keeping the process
fast and accurate.

For adaptation to variable lighting, the real-time
data processing module includes an adaptive
image enhancement component. A pre-trained
lightweight network analyzes the brightness and
contrast of each incoming frame in real time. If a
frame is overexposed or underexposed, the
component  automatically  adjusts  these
parameters to a standard range before sending the
frame to the model. This eliminates the need for
offline lighting calibration and ensures the model
receives consistent input even in environments
with sudden light changes like switching from
indoor to outdoor settings.

3D skeleton optimization improves motion
smoothness.  After generating 3D joint
coordinates from 2D data (using triangulation
based on multi-camera inputs) the system applies
a Kalman filter to reduce jitter caused by minor
frame-to-frame detection errors. The filter
averages small fluctuations in joint positions
while preserving the overall motion trajectory,
resulting in smoother and more natural skeleton
movements. This step is optimized to run in
parallel with model inference so it does not add
extra delay. These enhancements make the
system robust to real-world challenges while
meeting real-time performance requirements.

5. Experimental Design and Performance
Evaluation

5.1 Experimental Design

The experiment is designed to verify the
accuracy, robustness and real-time performance
of the deep learning-based motion capture system,
with settings aligned to the research plan in the
proposal. For hardware, high-resolution cameras
are adopted to capture human motion video data,
following the multi-angle and multi-sample
strategy specified in the research methods.
Cameras are placed at multiple positions to cover
full motion ranges, ensuring comprehensive data

http://www.stemmpress.com

input without missing key motion details!®,

Three core test scenarios are set up as planned.
The first includes different environmental
lighting conditions to simulate real-world light
variations. The second involves occlusion
situations where parts of the human body are
blocked, testing the system's ability to handle
incomplete visual information. The third covers
diverse motion types such as walking, running
and jumping, which are typical actions targeted
in the research to assess the system's adaptability.
The experiment uses the self-constructed
standard dataset mentioned in the proposal,
which contains various motion examples. The
dataset is split into training, validation and test
sets, and cross-validation is applied to train and
evaluate the model on different subset
combinations. This approach avoids overfitting
and ensures the model's performance is stable
across different data distributions, as required in
the experimental scheme.

5.2 Performance Evaluation Metrics

Four key metrics are selected based on the
research objectives and performance assessment
methods in the proposal. The first is joint
position estimation error, calculated by
comparing the system's predicted joint
coordinates (including head, shoulders, elbows,
hands, knees and ankles) with manually
annotated ground truth. The research target is to
keep this error no more than Scm under occlusion
and complex lighting.

The second metric is system latency, measuring
the time from video frame capture to the output
of final skeleton data. The threshold for real-time
performance is set at no more than 50ms to meet
interactive needs. The third metric is key point
detection accuracy and recall, which evaluate the
model's ability to correctly identify human key
joints-high values of these two metrics ensure the
system accurately captures core motion points
without omission or misidentification.

The fourth metric is frame rate (FPS), reflecting
the system's real-time processing speed. The
proposal requires a minimum of 30 FPS to ensure
smooth motion tracking and avoid lag during use,
so this is set as the evaluation standard for
processing speed.

5.3 Experimental Results and Analysis

Experimental results align with the preset
research targets outlined in the proposal. Under
complex lighting conditions, the average joint
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position estimation error is 4.3cm, which is
below the Scm target. In occlusion scenarios, the
error rises slightly to 4.7cm but remains within
the acceptable range, thanks to the trajectory
prediction and kinematic constraint optimization
methods designed in the research.

System latency averages 46ms, meeting the
requirement of no more than 50ms. The frame
rate stays stable at 31 FPS, ensuring smooth real-
time motion display. Compared with traditional
motion capture systems noted in the proposal-
such as optical systems that require markers and
have high costs, and inertial systems that have
cumulative errors-this system shows clear
advantages in low cost and strong robustness. Its
error is only 1.4cm higher than high-end optical
systems, but its hardware cost is reduced by over
60%.

Cross-validation results confirm the model's
stability, with consistent performance across
different data subsets. For dynamic motions like
running, the system maintains an error of 4.4cm,
demonstrating good adaptability to fast
movements. These results prove that the system
achieves the balance between accuracy, real-time
performance and cost-effectiveness as expected
in the research plan.

6. Application Scenario Verification

To validate the practical value of the developed
real-time motion capture system, two application
scenarios specified in the research plan were
selected for verification. These scenarios focus
on key application directions outlined in the
proposal, including virtual human animation
generation and gait analysis, aiming to test the
system's adaptability and effectiveness in real-
world use cases.

The first verified scenario is virtual human
animation generation, which aligns with the
proposal's goal of supporting film and game
production. During verification, the system was
used to capture a range of human movements
such as walking, waving and basic gesture
interactions. The captured 3D skeleton data was
directly transmitted to a virtual human model to
drive its movements. Special attention was paid
to whether the virtual human's actions matched
the original captured movements in terms of
smoothness and naturalness, including the
coordination of limb movements and the
simulation of physical effects like subtle muscle
stretching and clothing sway. The results showed
that the system maintained a latency of no more
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than 50ms and a joint position error below Scm
during the driving process. The virtual human's
movements were smooth without obvious jitter
or delay meeting the real-time interaction needs
of animation production. This verification
confirmed that the system could reduce the
reliance on expensive professional motion
capture equipment in animation production,
lowering production costs as expected in the
proposal.

The second verified scenario is gait analysis,
which targets the system's application in sports
analysis and medical rehabilitation as noted in
the research significance. In this verification, the
system captured the gait of both healthy subjects
and individuals in rehabilitation training. Key
gait parameters such as joint angles of knees and
ankles, step length and stride frequency were
extracted from the captured data. These
parameters were compared with data from
professional gait analysis equipment to assess
accuracy. The results showed that the system's
extracted parameters had a high consistency with
those from professional equipment with an
average deviation of less than 3%. This indicated
that the system could provide accurate gait data
to support athletes in correcting movement
postures and assist medical staff in evaluating the
progress of rehabilitation training fulfilling the
application value outlined in the proposal.
Overall, the verification results of the two
scenarios demonstrated that the system meets the
practical application requirements specified in
the research plan and provides effective technical
support for the targeted industrial and medical
fields.

7. Conclusion

This paper addresses the limitations of traditional
motion capture systems by developing a low-cost,
highly robust real-time prototype. The system
targets a joint position estimation error <5cm
under occlusion and complex lighting, a delay
<50ms, and verification of two application
scenarios.

For data support, multi-angle RGB/RGB-D
cameras collect diverse motion data, which is
annotated, cropped, augmented, and normalized
to build a standard dataset. The core model
adopts a two-stream graph convolutional network

integrated with adversarial learning and
trajectory space, optimized via pruning,
quantization, and hardware  acceleration

(GPU/TPU) for real-time performance.
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Experimental results show the system achieves
an average joint error of 4.3cm (4.7cm under
occlusion), 46ms latency, and 31 FPS, with over
60% cost reduction compared to high-end optical
systems. It is verified effective in virtual human
animation generation and gait analysis, providing
technical support for film/animation, VR/AR,
sports analysis, and medical rehabilitation.
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