

Discussion on the Development Path of Architectural Discipline Based on Artificial Intelligence Technology

Ming Zhang, Guanyi Lian, Shili Shang, Yingtong Zhong, Xitong Deng
Zhuhai College of Science and Technology, Guangdong Zhuhai, China

Abstract: Currently, the rapid urbanization and digitalization of society have placed higher demands on architectural education. Artificial intelligence (AI) technology, with its powerful data processing and generation capabilities, is transforming the architectural industry. However, the existing architectural teaching system lags behind in terms of thinking and methods. This paper, taking social reality issues and regional characteristics as the background and AI technology as the core, explores the development direction of the architectural discipline. The research proposes that a curriculum system driven by social problems, regional culture, and intelligent technology should be constructed, promoting teaching to shift from experience-based to data-driven, from form-focused to problem-solving, and from general skills to localized innovation, aiming to provide ideas for the reform of architectural education.

Keywords: Architecture; Discipline Construction; Artificial Intelligence; Social Issues; Regionality; Educational Innovation

1. Introduction

Architecture, as an interdisciplinary field integrating engineering technology, humanities, arts, and social sciences, is undergoing an unprecedented paradigm shift. Driven by the continuous deepening of the global urbanization process and the digital technology revolution, the disciplinary connotation, methodological system, and social role of architecture are all undergoing profound changes. The traditional architectural education model is based on the knowledge structure of the industrial era, emphasizing the shaping of formal aesthetics and engineering skills, and has formed a relatively stable disciplinary paradigm. However, this paradigm is increasingly showing its limitations in addressing contemporary complex urban issues, achieving sustainable development

goals, and responding to diverse cultural demands.

The current development of the architectural discipline faces multiple challenges. At the epistemological level, the tension between technological rationality and social values leads to confusion in disciplinary identity; at the methodological level, the contradiction between experience dependence and scientific requirements hinders the modernization process of the discipline; at the practical level, the conflict between globalization and regionalism tests the cultural adaptability of the discipline. These challenges not only concern the development of the discipline itself but also directly affect the contribution of architecture to solving human settlement problems and promoting sustainable social development.

At the same time, digital technologies represented by artificial intelligence are reshaping the way architectural knowledge is produced and disseminated. AI not only brings new design tools and analysis methods but more importantly, it promotes a fundamental transformation in architectural thinking. From data-driven to generative design, from performance simulation to intelligent decision-making, AI is redefining the essence and boundaries of architectural design. This technological transformation not only provides the possibility to break through the limitations of traditional architectural education but also creates conditions for building an architectural discipline system oriented towards the future.

Against this backdrop, the construction of the architectural discipline needs to go beyond simple technological superposition or course patching and undertake systematic theoretical reconstruction and methodological innovation. This paper, based on the ontological characteristics and contemporary requirements of architecture, takes the response to social issues as the orientation, regional cultural inheritance as the feature, and AI technology as the support, explores the innovative

development path of architectural discipline construction. By constructing a "society-region-technology" trinity theoretical framework, it promotes architectural education to shift from experience inheritance to knowledge innovation, from form creation to problem-solving, and from universal skills to localized wisdom, providing systematic theoretical support and practical guidance for the sustainable development of the architectural discipline.

2. Introduction to the Current Teaching Discipline System

The current teaching system of architecture has developed over a long period and has formed a relatively stable structural framework and implementation model. Guided by professional certification standards and centered on the cultivation of design capabilities, this system has constructed a multi-level and multi-module curriculum system, reflecting the unique educational characteristics of architecture as a comprehensive discipline.

2.1 Structural Features of the Curriculum System

The current teaching curriculum system of architecture presents a distinct pyramid structure. The base layer consists of general education courses, aiming to cultivate students' cultural literacy and scientific foundation; the middle layer is composed of professional foundation courses, focusing on establishing students' spatial cognition and design thinking; the top layer is the professional direction courses, emphasizing the cultivation of comprehensive design capabilities and innovative consciousness.

The general education module typically includes fields such as humanities and social sciences, natural sciences, and art theory, providing students with necessary knowledge breadth. Professional foundation courses cover architectural drawing, basic modeling, architectural history, architectural mechanics, and building materials, establishing a basic cognitive framework for architecture for students. Professional core courses are centered around the series of architectural design courses, running throughout the entire teaching period, forming a sequence of ability training from simple to complex and from basic to comprehensive.

This curriculum structure reflects the systematic thinking of architectural education, emphasizing both the foundational and comprehensive nature of knowledge and the progressive and integrated nature of abilities. Each course module is organically connected through prerequisite and subsequent relationships, jointly constructing students' professional knowledge system and ability structure.

2.2 The Core Position of Design Teaching

Design teaching occupies a core position in the current system and has distinctive organizational forms and implementation methods. Design courses typically adopt a studio-based teaching model, characterized by small-class, individualized guidance, and emphasizing close interaction between teachers and students. The teaching process focuses on the cultivation of design thinking, enhancing students' comprehensive design capabilities through systematic training in concept generation, development, and expression.

The content arrangement of design teaching follows a progressive principle. Lower grades focus on the training of spatial perception and basic design methods; middle grades emphasize the cultivation of functional organization and technical integration capabilities; and upper grades focus on the comprehensive solution of complex problems and innovative exploration. Each design project includes a complete process from task analysis, concept generation, scheme development, to technical deepening, allowing students to experience the real design process.

This design-centered teaching model effectively cultivates students' spatial imagination, creative thinking, and comprehensive problem-solving abilities, forming a unique advantage of architectural professional education. The continuity, systematicness, and practicality of design courses ensure the steady improvement of students' professional abilities and individual development.

2.3 The Supporting Role of Technical Courses

The technical course system provides necessary engineering technical support for architectural design, forming a teaching characteristic that combines theory with practice. This system includes core courses such as architectural construction, architectural structure, architectural physics, and architectural

equipment, covering key technical areas such as material selection, structural systems, physical environment, and equipment integration of buildings.

The teaching of technical courses emphasizes the understanding of principles and the mastery of methods, focusing on cultivating students' ability to apply technical knowledge to solve practical problems. Through various forms such as course design, experimental teaching, and on-site internships, students are encouraged to transform theoretical knowledge into practical skills. The close coordination between technical courses and design courses enables students to consider technical factors reasonably during the design process, achieving an organic unity of art and technology.

This technical education model reflects the engineering attribute of architecture, ensuring that students master necessary professional technical knowledge and possess the ability to transform design concepts into implementable plans, providing technical support for the cultivation of qualified architectural design talents.

2.4 The Theoretical Foundation of Humanities and Arts

The theoretical foundation of humanities and arts plays a crucial role in architectural education. It encompasses a wide range of subjects such as history, philosophy, literature, and art theory, providing students with a broad cultural background and aesthetic perspective. These courses aim to enhance students' cultural literacy, critical thinking, and creative expression abilities, enriching their design thinking and broadening their design horizons. The integration of humanities and arts with architectural design fosters a holistic design approach, emphasizing the cultural and social significance of architectural works. This comprehensive education model ensures that students not only possess technical skills but also have a deep understanding of the cultural and social context in which architecture operates, preparing them to become well-rounded architectural professionals. Humanities and arts courses provide essential theoretical support and cultural background for architectural education, and help build students' value judgment system and aesthetic cultivation. This course cluster includes architecture history, architectural theory, urban sociology, art history,

and other contents, covering the theoretical spectrum from traditional architectural culture to modern architectural trends.

The architecture history course systematically introduces the development of architecture at home and abroad, helping students understand the intrinsic connection between architecture and culture and society; the architectural theory course explores the basic principles and thinking methods of architectural design, cultivating students' theoretical thinking ability; related humanities and social science courses expand students' cultural horizons and deepen their understanding of the social nature of architecture.

These courses, through theoretical lectures, classic reading, and special topic discussions and other teaching forms, cultivate students' critical thinking and theoretical literacy, enabling them to carry out design creation on a profound cultural foundation and embody the spiritual connotation of architecture as a humanistic discipline.

3. The Current Teaching System Has Problems

3.1 Emphasis on Engineering Technology, Lacking the Cultivation of Social Problem-Solving Thinking

The traditional architectural education system often focuses on engineering technology training and form aesthetics shaping, such as drawing skills, structural mechanics, building materials, construction techniques, etc., which occupy the main part of the curriculum. This teaching model centered on technology and form, although it has certain achievements in cultivating students' basic design abilities, neglects the essential attribute of architecture as a social product. In this process, students are often trained to be "technical executors" rather than "problem solvers".

When facing complex social issues such as urban renewal, community integration, aging housing, and sustainable construction, students generally lack systematic problem identification and analysis abilities, and it is even more difficult for them to propose architectural solutions with social significance from a multi-dimensional and interdisciplinary perspective. The education system fails to effectively guide students to view architectural design as a comprehensive means to respond to

social needs and improve the living environment. As a result, students' design works often remain at the level of form expression, lacking in-depth thinking and effective intervention on social reality problems.

3.2 Design Relies on Design Experience, With High Requirements for Individual Design Ability

In traditional architectural design teaching, the generation and optimization of design schemes highly depend on the personal experience and subjective judgment of teachers and students. Teachers usually guide students in a "master-apprentice" manner, and students complete design tasks relying on their own inspiration and aesthetic accumulation. This teaching model has certain flexibility, but it also has obvious drawbacks:

Firstly, the teaching process is highly arbitrary and subjective, making it difficult to ensure consistency and scientificity in teaching effects. Students with higher talent or more experience can grow rapidly under the guidance of teachers, while others may get stuck in a creative bottleneck due to a lack of "design inspiration" or "experience accumulation", and progress slowly.

Secondly, design decisions often lack sufficient objective basis and data support. When students conduct site analysis, functional layout, form generation, etc., they mostly rely on case references and intuitive cognition rather than based on real environmental data, user behavior simulation or performance simulation results. This not only limits the rationality and accuracy of design schemes but also hinders the development of architecture as a modern discipline towards systematization and scientification.

4. Construction of the Disciplinary System and Development Ideas

To address the aforementioned issues, the disciplinary system of architecture urgently needs a systematic reconstruction. Future architectural education should break away from the traditional framework and shift towards a new educational paradigm centered on the trinity of "society - region - technology". The specific development ideas are as follows:

4.1 Reconstructing the Curriculum System Based on Social Issues

Architectural education should fundamentally transform its goal orientation and take "responding to real social problems" as the core principle of curriculum design. In the teaching process, students should be guided to move beyond pure form creation and turn to systematic analysis and comprehensive response to complex social issues.

Specifically, the curriculum should break through the original disciplinary boundaries of architecture and incorporate contents from related disciplines such as sociology, anthropology, environmental science, and public policy, forming an interdisciplinary knowledge structure. Design courses should guide students to focus on specific social phenomena, concretize social problems into teaching projects, and conduct research, analysis, and design in groups.

In teaching practice, teachers should guide students to start from a specific social "entry point" - such as the renovation of old residential areas, the revival of rural public spaces, and the design of temporary housing after disasters. Through on-site research, data collection, and user interviews, they should deeply understand the essence of the problem and propose feasible architectural solutions. This process not only trains students' design abilities but also cultivates their sense of social responsibility and systematic thinking, promoting the transformation of architectural design from "form creation" to "comprehensive problem-solving".

4.2 Highlighting Regional Characteristics

In today's globalized world, the local value of architecture is increasingly prominent. Architectural education should be rooted in the cultural and environmental characteristics of the region, cultivating students' localized design and innovation capabilities. Specifically, this should be approached from the following two aspects:

(1) Analyzing Local Culture

Guide students to deeply study the local historical context, folk traditions, architectural styles, and lifestyles, understanding the intrinsic connection between them and architectural space. For example, in teaching, students can be organized to survey and analyze traditional dwellings, extracting the characteristics of their spatial organization, material use, and construction methods, and transforming them into modern design languages. Through this

approach, students can not only inherit local culture but also achieve contemporary translation and innovation of local architecture in a globalized context.

(2) Responding to Local Environment

Architectural design is inseparable from the local natural environment. Teaching should guide students to pay attention to regional climate characteristics, topography, natural resources, and ecological environment, and take these factors as basic constraints in design. Through technical means such as ecological simulation, energy consumption analysis, and material recycling assessment, achieve harmonious coexistence between architecture and the environment, and enhance the sustainability of buildings.

4.3 Relying on Artificial Intelligence Technology

Artificial intelligence technology should become the core tool of the new teaching system, running through the entire process of architectural design, analysis, optimization, and evaluation. Its application should not be limited to the technical level but should also promote fundamental changes in design thinking and methods. Specifically, it can be developed in the following three directions:

(1) Data Analysis and Insight

Cultivate students' ability to use AI tools for the collection, processing, and analysis of urban and architectural-related data. For example, use machine learning algorithms to analyze population flow, traffic volume, environmental indicators, energy consumption, etc., to identify potential problems and opportunities in the design site. Through data-driven pre-design analysis, students can more scientifically formulate design strategies and enhance the social adaptability and environmental compatibility of the scheme.

(2) Generative Design

Utilize generative adversarial networks, parametric modeling, and multi-objective optimization algorithms to enable students to quickly generate a large number of design alternatives based on set functional requirements, spatial constraints, environmental conditions, and other input parameters. AI-generated design solutions are not only diverse but also seek a balance among multiple objectives such as form, structure, and energy consumption. On this basis, students conduct

comparisons, screenings and deepening, thereby breaking away from excessive reliance on personal experience and inspiration, and enhancing the systematicness and innovativeness of the design process.

(3) Performance Simulation and Optimization

Apply AI technology to the performance prediction and optimization stage of buildings. Utilize neural networks for building energy consumption simulation, sunlight analysis, acoustic environment assessment, structural safety verification, etc., enabling the prediction of the actual performance of the design in the concept stage. Through AI-assisted iterative optimization, students can identify and correct problems in the early design stage, improving the feasibility and comprehensive benefits of the scheme.

By integrating the above AI technology modules into core architecture courses, the educational goal is not only to master tool usage, but also to cultivate students to form a new type of design thinking of "human-machine collaboration". Through the human-machine collaborative model, the possibilities of architectural design can be expanded.

5. Conclusion

In the face of the advent of the digital and intelligent era, the construction of the discipline of architecture must undergo profound and systematic changes. Future architectural education should no longer be confined to the traditional domains of formal aesthetics and engineering technology; instead, it should take addressing real social issues as its core mission, inherit and innovate regional culture as its distinctive direction, and rely on artificial intelligence technology as its key support.

By establishing a new three-in-one curriculum system of "society - region - technology", we can promote the realization of three fundamental transformations in architectural education: moving from subjective experience to objective data, enhancing the scientificity and accuracy of design; moving from formal aesthetics to comprehensive benefits, strengthening the social responsibility and environmental awareness of the discipline; moving from general skills to local innovation, cultivating a new generation of architects with cultural consciousness and technical literacy.

This reform path not only concerns the future of architectural education but also relates to

whether we can cultivate high-quality design forces capable of leading industry changes and addressing future challenges. Educators, industry practitioners, and policy makers should work together to promote the development of architectural education towards a more open, integrated, and innovative direction, providing talent and intellectual support for building a more sustainable, inclusive, and intelligent living environment.

References

[1] Garg, K. , Jyoti, J. , & Sharma, V. C. . (2025). Identification of Behavioral Impact Parameters of Artificial Intelligence in Architecture Education. #i{International Conference on Trends in Architecture and Construction}. Springer, Singapore.

[2] Pradit, K. , & Piriyasurawong, P. . (2024). Architecture of artificial intelligence entrepreneurship on digital ecosystem for higher education institutions. #i{2024 9th International STEM Education Conference (iSTEM-Ed)}, 1-6.

[3] Zhu, H. , Zhao, Z. , & Lv, J. . (2024). Research on the impact of chatgpt and other nlp technologies based on gpt models on the construction and development of intelligent libraries in higher education. #i{Proceeding of the 2024 International Conference on Artificial Intelligence and Future Education}, 119-125.