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Abstract: To address the composite
requirements of route planning for
Unmanned Surface Vehicles under complex
sea conditions, which need to balance path
optimality, motion feasibility, and obstacle
avoidance, this study proposes a scenario-
specific optimized route planning method.
First, by reconstructing the cost function and
optimizing the node expansion strategy, an
improved A* algorithm is proposed, which
significantly enhances the efficiency of its
straight-line search in open waters. Second,
by deeply integrating the ship kinematics
model, introducing dynamic parameter
adjustment and path smoothing strategies,
an improved Hybrid A* algorithm is
constructed, which enhances its safe obstacle
avoidance capability in obstacle-dense areas.
Furthermore, a hybrid planning strategy

based on obstacle density for scene
recognition and dynamic  algorithm
switching is designed in this paper.

Simulation experimental results show that,
compared with traditional algorithms, the
proposed improved algorithms and hybrid
strategy exhibit significant advantages in key
performance indicators such as path length,
search time, and success rate in high-obstacle
areas. They can better adapt to the complex
and variable marine environment, providing
an effective technical solution for the
autonomous and safe navigation of
Unmanned Surface Vehicles.

Keywords: Marine Environment Adaptation;
Path Planning; USV Route Optimization;
Improved A* Algorithm; Improved Hybrid
A* Algorithm

1. Introduction

USV technology is widely applied in fields such
as marine exploration and disaster rescue, but
the insufficient adaptability of path planning
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algorithms to marine scenarios has become the
core bottleneck. The marine environment
presents unique challenges such as dynamic
obstacles and ship motion constraints. Although
traditional path planning algorithms can ensure
the geometric optimality of paths, they have
inherent flaws:

Marine obstacle modeling is coarse: it fails to
conduct refined modeling on the geographical
boundaries of obstacles such as irregular islands
and coral reefs, leading to the risk that planned
paths may frequently cross shoals or land
boundaries;

Neglect of ship motion constraints: the
generated "right-angle turns" or "sharp turning
paths" exceed the physical turning capacity of
USVs, resulting in path infeasibility;

Therefore, developing a path planning
algorithm that balances path shortestness,
motion  feasibility, marine  environment
adaptability, and computational efficiency
serves as the core technical fulcrum for
promoting the transition of USVs from
laboratory research to practical engineering
applications.

2. Related Work

Current research on USV path planning centers
on two core objectives: algorithm adaptation to
marine scenarios and meeting ship motion
constraints. Domestic and international studies
align with each other in technical directions,
and the specific progress is as follows:

2.1 Basic Algorithm Construction Phase

Domestic and international studies all take
classical path planning algorithms as the
starting point, providing a core framework for
subsequent optimization. Hart et al. proposed
the A* algorithm by introducing the heuristic
cost function f(n)=g(n)+h(n), which achieved
the balance between path optimality and search
efficiency for the first time. However, this
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algorithm was originally designed for general
scenarios and failed to consider the
characteristics of large-scale continuous marine
areas, irregular reefs, and other marine-specific
features; its direct application is prone to the
problem of redundant path turns [1]. Although
the motion planning theory and sampling-based
path generation method elaborated by Lavalle
can solve high-dimensional motion constraint
problems, they are focused on terrestrial robots.
These methods lack sufficient adaptability to
the three-degree-of-freedom (3-DOF) motions
of ships, namely surge, sway and yaw, making
it difficult to directly migrate them to marine
scenarios [2].

2.2 Marine Scenario
Optimization Stage
Domestic and international scholars have
conducted research on algorithm improvement
and data fusion targeting the navigation
characteristics of USVs. Park et al. improved
the Hybrid A* algorithm by introducing an
obstacle penalty term, which enhanced the
success rate of near-shore paths, but failed to
consider the kinematic constraints of ships
[3].Zhang Ming et al. improved the A*
algorithm by adding a marine weight coefficient,
shortening the path by 5%~8%, and Wang Jian
et al. simplified the ship kinematics model to
enhance feasibility, but neither of them
addressed the risk of hull grounding [4,5]; Liu
Kun et al. optimized obstacle modeling based
on nautical charts, and Zhao Jianhu et al.
improved the accuracy of nautical charts, but
neither of them integrated the water depth data
of shoals, resulting in the persistence of
potential collision risks [6,7]. Although relevant
foreign studies have focused on the coupling
between motion constraints and path planning,
they suffer from low modeling accuracy when
dealing with irregular marine obstacles, which
is likely to result in path collision risks. Chen et
al. constructed a 3D environmental model based
on S-100 electronic nautical charts, improving
environmental adaptability by 30%; however,
the increased complexity of data parsing has led
to longer planning time [8].

Adaptation and

2.3 Dynamic Environment and Multi-
Objective Optimization Research Stage

Dynamic Environment and Multi-Objective
Optimization Research Stage. Li et al. achieved
dynamic obstacle avoidance based on Deep
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Reinforcement Learning (DRL) and trajectory
prediction, but it suffers from insufficient
generalization ability in ocean-going scenarios
and high inference latency [9]. Zhang et al.
proposed a distributed cooperative framework,
reducing the cluster route crossing rate to 15%,
but failed to balance the motion constraints of
individual vessels and cluster efficiency [10].

In terms of adaptability to extreme sea
conditions, Wang et al. incorporated current
velocity and direction as constraint terms into
the cost function of the Hybrid A* algorithm:
by collecting real-time ocean current data, an
interference model of ocean currents on ship
tracks was established. In strong current
environments with a flow velocity exceeding 2
m/s, the path deviation was reduced from 12 m
to 5 m, meeting the engineering accuracy
requirements; however, this model simplifies
the vertical current component, and the path
accuracy still needs to be improved in sea areas
with significant upwelling and downwelling
[11].

To sum up, although existing research has
achieved certain progress, it still lacks an
integrated planning framework that can
adaptively switch optimization strategies
according to the dynamic changes of the marine
environment.

3. Principles of Path Planning Algorithms
The core of path planning is to find the optimal
path from the start point s to the end point t in
the gridded nautical chart G=(V,E).Marine
scenarios need to additionally satisfy two
constraints: remaining within marine areas
throughout the entire process and ship motion
constraints. Below, we will focus on analyzing
the path planning algorithm processes from the
perspectives of the A* algorithm and the Hybrid
A* algorithm.

3.1 A* Algorithm

Compared with basic path planning algorithms,
the A* algorithm introduces the heuristic cost
h(n), with the total cost f(n)=g(n)+h(n), and
accelerates  search  convergence through
heuristic information.

3.2 Hybrid A* Algorithm

The Hybrid A* algorithm is a path planning
algorithm specifically designed for
nonholonomic constraint systems. Its core
breakthrough lies in deeply integrating the
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kinematic model into heuristic search, ensuring
that the generated path meets the physical
motion limits of the carrier.

To summarize, these two types of algorithms
provide a clear problem-oriented direction for
improvements in marine scenarios: the A*
algorithm guides search through the heuristic
function f(n)=g(n)+h(n) and achieves higher
efficiency than general algorithms, but due to
ignoring ship motion constraints, the generated
path often contains non-navigable segments
such as '"right-angle turns"; the Hybrid A*
algorithm integrates the ship kinematics model
to address the issue of "path physical
feasibility", however, its fixed parameters
struggle to adapt to the complex marine
scenarios of "long-distance open waters + short-
distance obstacle-dense areas", resulting in
reduced efficiency in long-path planning.

4. Optimization Method

To ensure that the path planning process is
conducted within marine areas, it is first
necessary to perform legitimacy verification on
the input start point, end point, and intermediate
nodes. Next, the marine areas will be divided
into two categories: long-distance open waters
and short-distance obstacle-dense areas. For
long-distance open waters, the improved A*
algorithm is adopted; for short-distance
obstacle-dense areas, the improved Hybrid A*
algorithm is used for appropriate path planning.
The optimization implementation flow chart is
shown in Figure 1.
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Figure 1. Optimization Implementation Flow
Chart
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4.1 Marine Area Verification Mechanism
Manual Node Verification: For the marine USV,
its start point =( , ) and end point
= ( , ) must be within the boundaries of
the nautical chart.Marine Area Discriminant
Function: Define a binary function is_sea(x,y)
to describe whether the coordinates (x,y) belong

to a marine area:
1 if 0 x,y<W
is_sea(x,y)= (D)
0 else
Real-time filtering at intermediate nodes: For

the intermediate node n of the path, in addition
to verifying is sea ( , ) =1, it is also
necessary to ensure that all four corner points
belong to marine areas:

V (x,.y) € Vertices(n), is_sea(x,y,)=1  (2)
Among them, Vertices( ) denotes the set of the
vessel's corner points, which is calculated based

on the vessel's dimensions and heading angle:

L _ Wy
xv=x,1izcost//+ —siny

2
L W, (3)
yv=yni5sim//i7wsw

4.2 Improved A* Algorithm

Based on the characteristics of the A* algorithm,
the optimization focus is placed on prioritizing
adaptation to long-distance open waters to
achieve the goal of "straight-line priority and
efficient search".

Cost function reconstruction:Introduce the
"weight coefficient ® for marine obstacle-free
areas" to distinguish the heuristic costs between
open waters and obstacle-dense areas, and the
formula is optimized as:

fin)=g(n)+wh(n) 4)
Node Expansion Optimization:Cache
movement vectors to reduce redundant

calculations. For 8-directional movement, the
expanded time complexity after caching is
reduced from O(8) to O(1), with the
mathematical expression as the set of
movement vectors.

Moves(k) = {(0, £ k), (£k,0),( £k, £k)} ®)]
Path Smoothing Optimization:The process of
quantifying the smoothing effect is as follows:

q=(1-%)x100% (6)
4.3 Improved Hybrid A* Algorithm

The Hybrid A* algorithm integrates the
heuristic search of A* and the ship kinematics
model, making it suitable for carriers with
motion constraints and better adaptable to short-
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distance obstacle-dense areas. This paper
simulates the position and heading angle
changes of USVs through the ship kinematics
model, and introduces a multi-stage parameter
adjustment strategy. When search fails,
parameters such as speed and steering angle are
relaxed to find a suitable path in complex areas.
The planar motion of marine USVs can be
simplified to a three-state model:
§= [Xa Y, \V]
u=|[v,r] Q)
Dynamic Parameter Adjustment:To adapt to the
marine "short-distance reef-dense areas", the
mathematical model is designed as follows:
The time step At determines the "time
resolution" of state expansion, and the
piecewise function is defined as:
0.4s  d>400 Pixel
A=40.3s 200<d<400 Pixel ®)
0.2s d<200 Pixel

In the code, the G cost of ShipNode includes
distance and steering penalty, which is
mathematically expressed as:

G(1yex) =G (o)t (A *+(A0)*+22Ay) - (9)

Introduce the obstacle penalty, which is
mathematically expressed as:
c
h()=y Gax)*+(y)*+d- —  (10)

5. Experimental Design and Result Analysis

5.1 Experimental Environment

The experiment adopted a binary electronic
nautical chart with a resolution of 1000x600
pixels to simulate the complex marine
environment with multiple reefs in China's
South China Sea. The nautical chart

distinguishes land from ocean using a grayscale
threshold of THRESH=100: a pixel value of
255 represents a navigable marine area, and a
pixel value of 0 represents a land obstacle. The
nautical chart is _hshg)wn in Figure 2.

Figure 2. Experimental Ocean Chart
The parameters of the USV are set based on a
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self-developed unmanned boat model: the

vessel length L=12 m, vessel width =4m,
maximum speed . =6 knots, maximum
steering angular velocity . =0.2  rad/s,

corresponding to a minimum turning radius
min — 60m.

5.2 Experimental Results and Analysis

To verify the feasibility of the algorithms, the
traditional algorithm, improved A* algorithm,
improved Hybrid A* algorithm and hybrid
HAA?* algorithm are compared below in terms
of three aspects: search path length, search time,
and success rate in high-obstacle areas.

As shown in Figure 3, compared with the
traditional A* algorithm, the path length of the
improved A* algorithm increases slightly. This
is because the "weight coefficient for marine
obstacle-free areas" in its cost function
sacrifices part of the shortest-path property
when guiding the path away from potential risk
areas. The improved Hybrid A* algorithm
generates a smoother path through gradient
domain path refinement, with a total length
superior to that of the original Hybrid A*
algorithm. The HAA* hybrid algorithm

achieves a good balance between the two.
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Figure 3. Comparison of Search Path
Lengths for Multi-Algorithm

As shown in Figure 4, the improved algorithms
achieve a significant improvement in efficiency
through "search strategy optimization" and
"computational redundancy reduction", without
sacrificing path accuracy. In addition, the time
performance of the hybrid algorithm is fully
compatible with the real-time planning
requirements of complex sea conditions, and it
has greater flexibility than a single algorithm,
especially in tasks involving '"continuous
switching of multiple scenarios".
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Figure 4. Comparison of Search Path Time
for Multiple Algorithms
As shown in Figure 5, the success rates of the
improved Hybrid A* and HAA* algorithms in
high-obstacle areas are much higher than those
of other algorithms. This directly verifies the
key role of their deeply integrated ship
kinematics model and refined hull collision
detection mechanism in ensuring the physical

feasibility of the path.
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Figure 5. Comparison of Path Search Success
Rates among Multiple Algorithms

In summary, combining the three core
indicators of path length, search time, and
success rate in high-obstacle areas, the

improved A* algorithm, improved Hybrid A*
algorithm, and their hybrid algorithm have all
reached the level of engineering application in
terms of performance through targeted marine
scenario adaptation and motion constraint
optimization, providing reliable technical
support for USVs to move from the laboratory
to practical operations.

6. Conclusion
This study focuses on the two core challenges
of "marine environment adaptability" and "ship
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motion feasibility" in the path planning of
marine USVs. Through scenario-based in-depth
optimization and innovative integration of
classic algorithms, three key achievements have
been made as follows. An exclusive path
verification and optimization system for marine
scenarios has been constructed, and a threefold
verification mechanism of "start-end point
verification, intermediate node filtering, and
hull collision detection" is proposed to ensure
the entire path is located in safe sea areas. The
marine-oriented  improvement of classic
algorithms has been realized: the improved A*
algorithm achieves the best performance in
open water scenarios by reconstructing the cost
function and adopting bidirectional parallel
search. The improved Hybrid A* algorithm
greatly improves the success rate of paths in
high-obstacle areas through dimensionality
reduction of the motion model, dynamic
parameter scheduling, and gradient domain
fine-tuning, meeting the navigation
requirements of reef-dense areas. Additionally,
an attempt is made to combine the two
algorithms to make up for their shortcomings,
and a quantitative algorithm selection
framework is established.

Future research will focus on three directions:
"dynamic environment adaptability", "multi-
ship collaboration", and '"robustness under
extreme sea conditions". Integrate real-time
meteorological and ocean current data to
optimize the ship kinematics model, thereby
reducing path errors caused by wind, wave and
current interference. Construct a multi-ship
collaborative path planning framework and
introduce distributed optimization algorithms to
achieve conflict-free navigation of the cluster.
Conduct actual ship experiments on lakes and
seas to verify the performance of the algorithm
in real marine environments and further
iteratively optimize model parameters.
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