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Abstract: This paper addresses the massive
data processing challenges brought about by
the rapid expansion of the Internet of Things
(IoT), focusing on the increasingly prominent
limitations of traditional cloud computing
(CC) models in areas such as real-time
response, network bandwidth, and data
privacy. To systematically address these
issues, this paper aims to design an
intelligent IoT platform architecture based
on the collaboration of edge computing (EC)
and CC. The research employs a systematic
design approach, proposing a three-layer
overall architecture comprising a '"device
and edge layer, network transmission layer,
and CC center layer," and elaborates on its
core workflow of '"edge-cloud" vertical
collaboration and 'cloud-edge" horizontal
offloading. Through the design of key
functional modules and the analysis of
typical application scenarios, the paper
demonstrates that the platform can
effectively integrate the real-time processing
capabilities of the edge side with the deep
intelligence advantages of the cloud. The
research results show that this collaborative
architecture has significant value in ensuring
low-latency response, optimizing bandwidth
costs, enhancing system reliability, and
achieving continuous evolution of global
intelligence. This research provides a clear
and feasible design reference for building
efficient, reliable, and secure next-generation
IoT systems, and has positive implications
for promoting the practical application and

industrial development of related
technologies.
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1. Introduction
With the rapid development of information
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technology, the Internet of Things (IoT) has
permeated from conceptualization to various
aspects of the social economy, such as
industrial production, urban management, and
smart homes, realizing a wide connection
between the physical world and the digital
world [1]. In this process, the centralized cloud
computing (CC) paradigm has become the
mainstream mode supporting IoT applications
due to its powerful elastic computing and
massive storage capabilities. It aggregates all
data to remote data centers for processing,
providing a solid foundation for complex model
training and global business analysis [2].
However, the exponential expansion of the loT

scale and the increasing refinement of
application scenarios have gradually
highlighted the inherent limitations of

traditional cloud architecture. Uploading all raw
data involving privacy or core production to the
cloud has also brought significant security and
compliance risks [3,4].

To address the aforementioned challenges, edge
computing (EC), as a distributed computing
paradigm that pushes computing, storage, and
network resources down to the source of data,
has received widespread attention from
academia and industry in recent years [5]. It
achieves local processing and real-time
response of data by deploying computing nodes
(such as smart gateways and edge servers) at
the network edge, effectively reducing network
transmission load and business latency.
Researchers have explored the value of EC in
the Internet of Things from multiple
perspectives [6]; other studies are dedicated to
deploying lightweight artificial intelligence
models on resource-constrained edge devices to
support local intelligence [7]. However,
emphasizing EC in isolation also has limitations,
such as the fact that edge nodes cannot match
the cloud in terms of computing power, data
breadth, and model training depth [8].
Therefore, the consensus in the field is
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gradually becoming clear: architectures that
rely solely on the cloud or the edge are not
optimal solutions, and EC and CC are not
substitutes for each other, but rather have
significant ~ complementary  characteristics.
Although existing research has recognized the
importance of collaboration, most of the work
either focuses on a specific technical detail
(such as task scheduling algorithms) or only
proposes a conceptual framework, lacking a
coherent explanation of the overall platform
design logic, modular functional composition,
and collaborative workflow in typical scenarios
[9,10].

Therefore, this paper aims to move beyond
discussions of single technologies and, from the
perspective of an integrated system, design an
overall architecture for a smart loT platform
based on deep collaboration between EC and
CC. Methodologically, this paper first analyzes
the inherent logic and design goals of cloud-
edge collaboration, and then proposes a three-
layer overall architecture comprising a "device
and edge layer, network transmission layer, and
CC center layer." This paper aims to
demonstrate how this design organically
integrates the real-time responsiveness of the
edge with the deep intelligence of the cloud,
thereby  systematically  addressing  core
challenges such as latency, bandwidth, security,
and cost.

2. Overview of Related Technologies

2.1 Core Features of CC

CC is a mode of accessing shared, configurable
computing resources (such as networks, servers,
storage, applications, and services) in an on-
demand, easily scalable manner over a network
(usually the Internet). It essentially provides
computing power as a standardized, centralized
service.

Its main characteristics are reflected in the
following aspects:

(1) Centralization of resources. CC centralizes a
large number of distributed compute, storage,
and network resources in large data centers for
unified management and scheduling. Users
don't need to care about the physical location
and specific details of the resource.

(2) Strong elasticity and scalability. CC
platforms can dynamically and automatically
allocate and release resources according to
changes in users' business loads. This elastic
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scalability enables it to calmly respond to
sudden data floods or computing needs that may
occur in [oT scenarios.

(3) In-depth analysis and model training
capabilities. =~ Thanks to massive data
aggregation and near-unlimited computing
potential, CC centers are ideal places for
complex data mining, machine learning model
training, and global business intelligence
analysis. It can extract universal laws and
knowledge from massive historical data, and
provide "brain" level intelligent support for the
entire system.

2.2 Core Features of EC

EC is a new computing paradigm that moves
compute, storage, and network functions from
centralized cloud data centers to the edge side
of the network closer to data sources or users.
EC is characterized by its proximity and
distribution:

(1) Low latency and real-time response. Since
the computing node is close to the end device,
data can be processed without long-distance,
multi-hop network transmission, and can
achieve millisecond-level response. This is
critical for applications that are extremely
latency-sensitive, such as industrial control,
autonomous driving, and interactive video
analytics.

(2) Bandwidth saving and data burden reduction.
Initial processing, filtering, and aggregation at
the source of the data can greatly reduce the
amount of data that needs to be uploaded to the
cloud. This not only relieves the bandwidth
pressure on the core network but also reduces
the cost of data transmission and storage.

(3) Localized privacy and  security
enhancements. Sensitive or private data can be
processed at local edge nodes without leaving
the physical or administrative boundaries it
generates. The raw data does not have to be
uploaded to the cloud, reducing the risk of data
leakage during transmission and cloud storage,
while also helping to meet compliance
requirements for localized data storage.

2.3 The Inevitability of Synergy

Looking at CC or EC in isolation does not fully
meet the full range of needs of modern
intelligent IoT applications. The two are not
essentially a competition or substitution
relationship, but present a clear and strong
complementarity, which inherently determines
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the inevitability of synergy.

In terms of task characteristics, CC is good at
handling global, non-real-time, and computing-
intensive tasks. EC, on the other hand, is adept
at handling local, real-time, agile and
responsive tasks. Therefore, an ideal intelligent
IoT platform architecture must achieve
functional decoupling and logical coordination
between edge and cloud capabilities. As a
distributed computing front-end, edge nodes
mainly undertake real-time data processing and
local decision-making tasks with high
throughput and low latency, forming a
preliminary closed loop of business response.
The cloud data center is responsible for the
aggregate storage of cross-domain
heterogeneous data, the in-depth training of
complex models, and the generation of global
policies as a centralized intelligent backend. By
continuously  distributing  cloud-optimized
algorithm models and business rules to edge
nodes, the system can realize the dynamic
distribution of knowledge and experience and
capability  iteration.  This  collaborative
mechanism based on "real-time execution at the
edge and global optimization in the cloud"
together constitutes an intelligent system with
elastic responsiveness and continuous learning
and evolution, which is the core paradigm of
modern loT platform architecture design.

3. Overall Design of the Intelligent Internet
of Things Platform for Cloud-Edge
Collaboration

3.1 Design Objectives

The platform is designed to meet the core needs
of complex IoT application scenarios, and the
following key goals are established:

Low latency and high real-time: For scenarios
such as industrial control and video surveillance,
it ensures that critical services can achieve
millisecond-level response on the edge side and
meet strict latency constraints.

Bandwidth optimization and cost control: By
cleaning, aggregating, and preliminary analysis
of raw data on the edge side, the amount of data
that needs to be uploaded to the cloud is greatly
reduced, thereby reducing the pressure on
network transmission bandwidth and operating
costs.

System reliability and resilience: Even if the
network connection is temporarily interrupted
or cloud services are unreachable, the edge side
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should be able to maintain the local autonomous
operation of core services, ensure that basic
system functions are not interrupted, and
improve overall service availability.

Data security and privacy protection: Supports
preprocessing such as desensitization and
encryption at the source of data generation
(edge side) to avoid sensitive raw data being
transmitted in plaintext in the network or stored
in the cloud to reduce the risk of data leakage.
Global intelligence and continuous evolution:
Leverage the powerful computing power and
data aggregation advantages of the cloud to
conduct in-depth data analysis, model training,
and knowledge mining, and dynamically
distribute optimized algorithm models and
strategies to the edge side to achieve continuous
iteration and improvement of the overall
intelligence level of the system.

3.2 Overall Architecture Design

To achieve the above goals, the platform adopts
a hierarchical loosely coupled architecture,
which is divided into the device and edge layer,
the network transport layer, and the CC center
layer from the bottom up (the overall
architecture is shown in Figure 1). The three
layers interact with the protocol through
standardized interfaces and together form an
organic synergistic whole.

The device and edge layer is the platform's
physical sensing and real-time processing unit.
This layer consists of a massive number of
heterogeneous IoT terminal devices (such as
sensors, controllers, and cameras) and their
adjacent EC nodes (such as smart gateways,
edge servers, and micro data centers). Terminal
devices are responsible for collecting raw
physical world data; edge nodes undertake core
EC tasks, including data access, protocol
parsing, real-time stream processing, local rule
engine execution, lightweight Al model
inference, and rapid local feedback control.
This layer is crucial for the platform to achieve
low-latency response and bandwidth
optimization.

The network transport layer serves as the link
for the flow of platform data and commands. It
is responsible for providing a reliable, secure,
and efficient bidirectional communication
channel between the edge layer and the cloud.
This layer needs to adapt to various network
environments (such as wired, 4G/5G, LoRa, etc.)
and support encryption, integrity verification,
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and priority scheduling of transmitted data. Its
design focuses on ensuring the quality of
service for the uploading/downloading of
collaborative commands and critical data,
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especially by providing fault tolerance and
retransmission mechanisms when network
conditions are unstable.

| Cloud Center Layer ‘

Big Data Storage
and Analysis

Al Model Training
and Optimization

Business
Applications and
Visualization

Global monitoring
and management

J Secure encrypted

channels (4G/5G, fiber
optic, etc.)

Network Transmission Layer |

Protocol Adaptation, Data Encryption, QoS
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Device & Edge Layer
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Controller

Edge Node

Figure 1. Overall Architecture Diagram of Cloud-Edge Collaborative Intelligent IoT Platform

The CC center layer serves as the platform's
control and global resource management hub. It
comprises centrally deployed cloud data centers,
possessing near-limitless elastic storage and
ultra-high computing power. This layer is
primarily responsible for archiving and storing
massive amounts of historical data, performing
complex big data analysis and mining, training
and optimizing large-scale machine learning
models, unified monitoring and management of
all  network  devices, and providing
comprehensive  business applications and

visualizations for end-users. The cloud
aggregates global information, generates
superior business strategies and algorithm

models, and distributes them to the edge layer
to guide execution.

3.3 Collaborative Workflow Design

The core of the platform lies in the dynamic and
intelligent task collaboration and data flow
between the edge and the cloud. Its workflow
design follows the core logic below (the
collaboration process is shown in Figure 2):

Cloud-based collaborative workflow

Cloud-based training| feedback
and optimization

Edge reasoning and
execution

Deploy|models/strategies

Report summary/data

. Aggregated Real-time
Global Analysis and ggdafa .
. processing and event
Storage L
summarization

Task unloading logic:

High load or
compute-intensive
edge nodes

uninstall

Real-time response process:

Execute non-real-
4| time or complex
tasks in the cloud

Perceiving the
occurrence of events

Edge Real-Time
Decision Making
and Response

Local action
execution

Asynchronous reporting of key
summaries to the cloud

Figure 2. Cloud-Edge Collaboration Workflow Diagram

The "edge-cloud" vertical collaboration process
is the key path. For time-sensitive tasks, the
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platform adopts a "real-time edge response,
asynchronous cloud filing" process. For
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example, when an industrial sensor detects that
the vibration value of the equipment exceeds
the safety threshold, the edge node immediately
triggers a local alarm and executes an
emergency shutdown command according to
preset rules. At the same time, it
asynchronously  uploads key  summary
information of this event (rather than all the
original waveform data) to the cloud for
recording and subsequent analysis. For model-
driven tasks, the process follows "cloud training,
edge inference, and continuous iteration." The
cloud uses aggregated historical data to train or
optimize Al models, and then distributes the
lightweight models to the edge nodes. The edge
nodes use these models for local real-time
inference. Meanwhile, new labeled data or
model execution feedback generated at the edge
are uploaded to the cloud for the next round of
model retraining, forming a closed-loop
optimization.

The "cloud-edge" horizontal collaboration logic
is reflected in dynamic resource allocation and
task offloading. The platform has a built-in
resource status monitoring mechanism. When a
single edge node faces a sudden surge in

computing load, exceeding its processing
capacity, the platform can intelligently
"offload" some non-real-time or

computationally intensive subtasks (such as
batch analysis of historical data) to the cloud for
execution, according to preset strategies.
Conversely, for certain globally distributed
analysis tasks, the cloud can also dynamically
decompose and distribute the task to multiple
edge nodes for parallel processing based on the
real-time load and data relevance of each edge
node. This dynamic task offloading and
distribution logic aims to maximize the overall
computing resource utilization efficiency and
achieve load balancing of the system.

This collaborative workflow ensures that data
processing is completed at the most appropriate
level, meeting both real-time requirements and
fully utilizing the powerful analytical
capabilities of the cloud, thus forming the
foundation for the platform's intelligent and
efficient operation.

4. Platform Key Module Design

4.1 Resource Management and Scheduling
Module

The resource management and scheduling
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module is the core of the platform's unified
view and intelligent allocation of resources
across different levels. Its design goal is to
abstract heterogeneous computing, storage, and
network resources and dynamically schedule
them according to the needs of collaborative
workflows. The module mainly consists of three
parts: a resource abstraction layer, a status
monitor, and a scheduling decision engine.

The resource abstraction layer is responsible for
shielding the differences in underlying
hardware and infrastructure. At the edge, this
layer virtualizes the CPU, memory, storage, and
dedicated accelerator (NPU) resources of
various edge nodes into standardized computing
units; at the cloud, it interfaces with the
virtualized resource pools of cloud service
providers. Through a wunified resource
description model, the platform can consistently
perceive and manage the overall resource status
from the edge to the cloud.

The status monitor continuously collects and
summarizes real-time operational metrics for
each resource unit, including but not limited to
compute load, memory usage, network
bandwidth consumption, task queue length, and
node network connectivity. The monitoring data
is used for real-time visualization, providing
administrators with a comprehensive view of
system operation; it also serves as input for
scheduling decisions.

The scheduling decision engine executes
scheduling based on preset strategies and real-
time status. Its core scheduling strategies
include two categories: first, collaborative task
mapping, which intelligently decides whether to
allocate tasks to edge nodes or offload them to
the cloud based on their real-time requirements,
computational complexity, and data locality;
second, dynamic load balancing, where the
scheduling engine can migrate some of its
migrateable tasks to other idle edge nodes in the
same region or to the cloud to prevent
performance bottlenecks; conversely, it can also
distribute some lightweight tasks from the cloud
to the edge to reduce cloud pressure. The engine
allows administrators to optimize strategies
according to different business scenarios
through a strategy configuration interface.

4.2 Security and Privacy Protection Module

The collaborative architecture introduces
distributed data processing nodes, which
expands the security perimeter but also brings
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new privacy challenges. This module's design
spans the entire "device-edge-cloud-pipe" chain,
aiming to build a defense-in-depth system.

At the device and edge sides, module design
emphasizes source protection. First, it provides
hardware security anchors, such as integrating a
Trusted Execution Environment (TEE) or
security chip, to protect the integrity of the edge
node's startup process, key storage, and critical
code. Second, it implements local data
anonymization and desensitization. When data
leaves the terminal device or enters the edge
node, sensitive fields (such as facial features
and location trajectories) are perturbed,
generalized, or encrypted according to policies
to ensure that data uploaded to the network does
not contain original information that can
directly identify individuals or critical facilities.
At the network transport layer, the module
enforces end-to-end communication security.
All cross-layer data and control command
transmissions must be conducted through a
secure encrypted channel based on TLS/DTLS.
Furthermore, the module supports integrity
verification of transmitted data to prevent data
tampering during transmission.

On the cloud side, the module focuses on
centralized security management and auditing.
A unified identity authentication and access
control center is designed to perform strong
authentication on all connected devices, edge
nodes, and users, and implement fine-grained
access authorization based on roles and
attributes. Data stored in the cloud is encrypted

by default, with keys managed by an
independent key  management  service.
Simultaneously, = the  module  provides
comprehensive  security  audit  logging

capabilities, recording all critical operations and
data access behaviors for easy post-event
traceability and analysis. Through a unified
security policy management center, the module
allows administrators to define security policies
once and automatically distribute them to
relevant edge nodes for execution, ensuring
consistency of security policies across the cloud
and edge.

4.3 Data Management and Service Module
This module is responsible for defining the
lifecycle, flow rules, and service interfaces of
data across different layers of the platform, and
is the concrete manifestation of collaborative
logic at the data level.
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The module employs a tiered data storage
strategy. At the edge, high-performance caches
and temporary storage areas are designed to
store frequently accessed data, supporting rapid
read and write access for edge applications. For
data requiring long-term storage or global
analysis, preliminary cleaning, compression,
and aggregation are performed at the edge,
followed by asynchronous, tiered archiving to
cloud object storage or time-series databases.
Metadata is managed uniformly across both the
edge and cloud to support efficient data
discovery and retrieval.

Building upon data flow, the module provides
standardized data service interfaces. It shields
upper-layer applications from the complexity of
data physical location, providing a unified data
access view. For scenarios requiring batch data,
such as model training, the module offers
efficient data lake access services, supporting
direct synchronization or retrieval of processed
standardized datasets from edge nodes to the
cloud.

In addition, the module features a specially
designed model and knowledge distribution
channel. After model training is completed in
the cloud, this channel is responsible for
securely and reliably distributing the model, its
version information, and performance metrics
to designated edge node groups. The channel
supports differential updates and breakpoint
resumption to adapt to potentially unstable
network environments at the edge, ensuring that
knowledge can be efficiently radiated from the
center to the edge.

5. Conclusion

This paper addresses the limitations of
traditional cloud-centric IoT architectures in
terms of real-time performance, bandwidth
costs, and data privacy. It designs a smart loT
platform architecture that integrates EC and CC.
The design employs a three-layer architecture: a
device and edge layer, a network transmission
layer, and a CC center layer. It clearly defines
the functional boundaries and collaborative
interfaces of each layer and elaborates on the
vertical collaborative process based on "instant
edge response and asynchronous cloud filing"
and "cloud training, edge inference, and
continuous iteration," as well as the horizontal
collaborative logic supporting dynamic task
offloading. Furthermore, the design
considerations for key modules such as resource
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management and scheduling, security and
privacy protection, and data management and
services are explained, thus constructing a
system model that is clearly layered,
functionally  decoupled, and organically
collaborative. Future research can build upon
this foundation to further explore Al-driven
adaptive collaborative scheduling algorithms,
lightweight unified security frameworks for
heterogeneous  edge  environments, and
standardized collaborative interface protocols,
thereby promoting the deep evolution of cloud-
edge collaboration from architectural design to
large-scale stable deployment.
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