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Abstract: In order to cope with the practical
needs of UAV swarm situational awareness in
complex scenarios such as battlefield enemy
screening and disaster area rescue, this paper
systematically compiles the research progress
of intelligent screening technology in the field
of heterogeneous UAV swarm situational
awareness. The research focuses on two core
technology directions: first, analyzing the
UAV target tracking and motion planning
technology in complex environments,
focusing on the multimodal target detection
scheme integrating YOLOv5 algorithm and
OpenPose attitude detection, and the spatial
and temporal trajectory optimization method
based on unconstrained Minimum Control
Quantity trajectory (MINCO); second,
exploring the key methods of cooperative
control of UAV clusters, including distance
division based coalition formation control
algorithm, and hierarchical recursive
distributed self-repair algorithm for UAV
damage. By analyzing the existing research
results, experimental data and simulation
verification, we clarify the technical
advantages and applicable scenarios, and
provide theoretical support for the
engineering application of UAV swarm
intelligent inspection technology.
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1. Introduction
Nowadays, trade wars and international conflicts
are getting more and more intense, which in turn
prompts science and technology to be in
constant progress, especially in the field of
unmanned aerial vehicles (UAVs), which has
unprecedentedly got unprecedented
opportunities and challenges, so that he has
organically fused with all kinds of things in the

field and even at the cross-field level. In
complex scenarios such as battlefield enemy
situation investigation and rescue of trapped
people in disaster areas, the application value of
UAV technology is becoming more and more
prominent. In the battlefield enemy situation
checking scenario, UAV swarm can break
through the limitations of traditional artificial
reconnaissance, such as poor timeliness, high
cost, low security, etc., and through real-time
situational awareness to enhance the scientificity
of battlefield decision-making, enhance the
ability of dynamic offense and defense, and have
military application value. In the rescue of
disaster areas, UAV swarms can quickly obtain
geographic information and track trapped people,
solving the limitations of complex geographic
conditions and the golden rescue time window,
and improving rescue efficiency and safety,
which has significant civil rescue value. For
example, in the Fukushima nuclear power plant
accident in Japan in 2011, drones were used for
reconnaissance and monitoring of radiation
levels; in the Paris hostage incident in France in
2015, drones were involved in the rescue
operation; in the Russian-Ukrainian conflict
since the beginning of 2022 to the present day,
drones have taken up a central position in the
military actions of both sides and continue to
influence the war situation and the security
situation in Europe to the present day; as well as
in China's 2008 Wenchuan earthquake, drones
successfully carried out aerial photography and
photography. UAVs successfully carried out
aerial photography and disaster assessment
missions in China's 2008 Wenchuan earthquake,
to name a few. Here, I will sort out the research
progress of intelligent ranking techniques in the
field of heterogeneous UAV swarm situational
awareness:
Firstly, analyze the core technology of target
tracking and motion planning in complex
environments by Chen Lin [1], focusing on the
aspects of target detection and trajectory
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prediction.
Secondly, explore the key methods of UAV
cluster cooperative control by Fu Xiaowei et al.
[2], focusing on summarizing the technological
breakthroughs of coalition formation control
algorithms and distributed recursive self-repair
algorithms.
And then summarize the technical advantages of
the existing research, put forward the future
research direction and suggestions, aiming to
provide theoretical support and practical
reference for the deepening research and
engineering application of UAV swarm
intelligent troubleshooting technology.

2. Core Technology of Target Tracking and
Motion Planning

2.1 Target Detection
The first step to realize target tracking is to
detect the target through the on-board sensors,
and due to the payload limitation of micro aerial
vehicles, the visual sensor is the most suitable
sensor for UAVs to carry. The accuracy of target
localization significantly affects the stability and
success rate of the subsequent tracking process,
while the motion prediction of the target directly
affects the quality of motion planning.
Therefore, the detection and localization of
targets and trajectory prediction using highly
robust methods is one of the focuses of the
research on the technology of tracking dynamic
targets by UAVs in complex environments.
Based on the needs of target tracking in complex
environments, as well as the comprehensive
consideration of the cost of the UAVs and the
load capacity and other factors, Chen Lin adopts
the binocular vision system for detecting and
localizing the moving targets, and hereby
proposes a visual detection scheme
incorporating human body postures Firstly, the
neural network-based method is used to train the
model and the YOLOv5 algorithm[3] is utilized
to detect the motion targets, but the single
YOLOv5 model is easy to miss and misdetect
the human targets in the complex environment,

as shown in Figure 1.

Figure 1. False Detection Phenomenon of
Single YOLOv5 Algorithm

The lightweight OpenPose algorithm[4]

developed by Carnegie Mellon University is
utilized to improve the YOLOv5 algorithm by
inputting a single frame of the latter's detection
results into the former for posture detection,
realizing the tandem detection scheme, obtaining
the location of key points of each human
skeleton, and then matching them through
Euclidean distances to specifically detect each
one so as to accurately determine the target,
greatly reducing the incidence of false detection
problems, as shown in Figure 2.

Figure 2. Improved YOLOv5 Algorithm
Detection Effect

In the outdoor experimental environment, by
setting different detection distance conditions,
the false detection rate and leakage rate of the
single YOLO algorithm and the improved
algorithm are compared, and the specific
indicators are shown in Table 1.

Table 1. Comparison of Improved YOLOv5 Algorithm
Distance
(m)

Single YOLO
false detection rate

Improved algorithm
false detection rate

Single YOLO missed
detection rate

Improved algorithm
missed detection rate

2.00 10.8% 1.3% 5.8% 1.3%
3.00 11.2% 2.5% 11.8% 2.1%
4.00 12.5% 4.4% 15.8% 4.4%
5.00 23% 5.5% 20.8% 7.8%
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2.2 Target Detection
For the problem of tracking a moving target in a
complex environment, trajectory planning needs
to consider factors such as target visibility in
addition to airframe dynamics feasibility. These
task constraints require the UAV to
simultaneously adjust the characteristics of the
flight trajectory in both the spatial and temporal
domains. Therefore, simultaneous planning of
trajectory shape and time allocation, also known
as spatio-temporal trajectory planning, is crucial
for safe and efficient UAV flight. In order to
perform simultaneous spatio-temporal trajectory
planning, Chen Lin partially introduces the
research of Wang et al. [5]: unconstrained
minimum control volume trajectory (MINCO
for short).
In the MINCO method, fast spatio-temporal
optimization is achieved by decoupling the
spatial and temporal parameters in the
calculation of the objective function and
realizing the linear complexity mapping between
the optimization variables and the intermediate
variables representing the trajectory.
In addition to this, Chen Lin incorporates the
proven theory that all three-rotors, four-rotors
and six-rotors, such as Mu[6], etc., have
differential flatness properties, which eliminates
the necessity for UAVs to carry out intensive
computations in the full state space, and only
requires trajectory planning for the
low-dimensional differential flatness output
space, thus bringing an extreme level of
convenience to trajectory planning.
Accordingly, the trajectory optimization
problem can be reduced to the following
formulation:

min
x(t),T

 J0=
0

T
x(3)(t)�

2

dt+ρT

s.t.x(s−1)(0)=x�0 , x(s−1)(T)=x� f ,
   x(1)(t) ≤vm ,  x(2)(t) ≤am ,
  x(t)∈C , ∀t∈[0 , T] ,
  dl≤ x(tk) ≤du , ∀tk∈T� ,

  x(tk)∈Ok , ∀tk∈T�
  T≥Tp , (1)

where the first term of the optimization
objective is to control the energy loss term,
which is generally defined as the higher order
derivatives of the trajectory, where the order s =
3 is taken, and the third order derivative of the
position is the additive acceleration jerk, and the

second term of the optimization objective is the
time loss term, where ρ is an adjustable
parameter. The first term of the constraint is the
boundary condition constraint, i.e., the planned
trajectory needs to satisfy the given initial and
final states: including position, velocity, and
acceleration.
The second term of the constraint is the
dynamics constraint,vm and am are the velocity
and acceleration bounds, i.e., they cannot exceed
the maximum velocity and acceleration limits of
the UAV dynamics model. The third term is the
safety constraint, which ensures that the UAV is
within the safe flight corridor C . The fourth
term of the constraint is the distance keeping
term, which is responsible for constraining the
UAV's tracking distance to the target within a
reasonable range. The fifth constraint is the
visibility region guarantee, which sets the visual
visibility region Ok and constrains the
trajectory to be within this region. This
constraint is used to avoid obstacles from
blocking the UAV's observation field. The sixth
constraint is the time constraint, TP is the
predicted timestamp, and the total duration of
the trajectory is expected to be T� ( T� ≥TP ).
The MINCO trajectory after the comprehensive
constraints of Chenlin is compared with the
traditional B-spline curve trajectory
representation, as shown in Figure 3.

Figure 3. Comparison of Trajectories in
Complex Environment

B-spline trajectory
MINCO trajectory
B-spline trajectory in regular obstacles
MINCO trajectory in a regular obstacle.
In order to make a more intuitive and effective
comparison, in the irregular obstacle distribution
scenario, this paper sets four constraint points
(0,10), (10,0), (0,-10), (-10,0), where the starting
point of the trajectory is (-13,0), the end point of
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the trajectory is also the last constraint point,
and sets the UAV dynamics limitations,
including the maximal velocity of 2m/s and the
maximal acceleration of 4m/s². In the regular
obstacle distribution environment, the settings
are identical except for the location of constraint

point 3 at (12,0). The UAV will complete the
online generation of the trajectory and execute
the flight mission according to the set constraint
points, and the trajectory is shown as the black
curve in Figure 3 above. The experimental
results are shown in Figure 3.

Figure 4. Comparison of Trajectories under Specified Targets
Comparison of 2D projection of trajectory
Comparison of position curve
Velocity curve comparison
Acceleration curve comparison
From the velocity profile Figure 4(c), it can be
seen that the MINCO trajectory is faster most of
the time, which is the reason for completing the
task faster. In addition, the MINCO trajectories
all reach the maximum limit of the velocity in
amplitude at time t ∈ {11.3, 34.5}s, which
indicates that the MINCO method makes full
use of the degrees of freedom of each segment
of the trajectory in the adjustment time, thus
realizing lower conservatism and reaching the
performance limit compared with the traditional
trajectory representation method. In this paper, a
change of 1.5 m/s² in acceleration within 2 s is
defined as a sudden change in acceleration, and
from the acceleration curve Figure 4(d), it can
be seen that the number of sudden changes in
acceleration in the MINCO method is 3, which
is obviously less than the number of 7 changes
in the B-spline, and it can be seen that the
trajectory of the MINCO method is smoother.
From the results in the figure, it can be seen that
compared with the traditional B-spline trajectory
representation, the MINCO method brings
significant improvement in trajectory quality
and computational efficiency.

In terms of control energy, in the
aforementioned obstacle environment and
completely empty environment, respectively, the
MINCO method is more efficient.
In terms of control energy, comparison
experiments are carried out in the above obstacle
environment and completely empty environment
respectively, and the constraints of the
experiments are exactly the same as those in
Figs. 4-14. In this paper, the control energy is
measured by integrating the square of the
absolute value of acceleration over the time, i.e.,
the control energy is equal to 0

T
∥a∥� , where a

denotes the acceleration. The experimental
results are shown in Figure 5.

Figure 5. Comparison of Control Cost of Two
Trajectory Representation Methods in

Different Environments
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3. Key Methods for Cooperative Control of
UAV Cluster

3.1 Introduction to the Concept
UAV cluster refers to the self-organization
mechanism, so that multiple UAVs with limited
autonomy can achieve a higher degree of
autonomous collaboration through mutual
information communication to produce an
overall effect without centralized command and
control, so that they can accomplish the desired
mission objectives with as little personnel
intervention as possible.
The most important advantage of multi-UAV
collaboration over traditional UAV collaboration
is that it can accomplish the desired mission
objectives with minimal personnel intervention.
The biggest difference with the traditional
multi-UAV collaboration is that no one UAV in
the UAV cluster is in the position of the center
controlling the dominant flight, and it pays more
attention to the mutual autonomous coordination
among the UAVs in the cluster. Fu Xiaowei et al.
focus on the research of UAV cluster formation
flight control method. Formation flight
formation control refers to how UAV clusters
form and maintain a specific geometric
configuration to adapt to the environment,
friendly aircraft and mission requirements when
performing a mission. Currently, the UAV
cluster formation control techniques that are
widely used in the international are: the long
aircraft wingman method, the virtual structure
method, the behavior-
-based control method and the consistency
algor-
-ithm based on multi-intelligent body system
[7-10].

3.2 Cluster Formation Control Algorithms
3.2.1 Individual formation controller design
Based on the consistency method, Fu Xiaowei et
al. designed the formation individual control law
as:

ui(t)= β1
j=Ni

N

aij(p)(vj−vi)�
� � ����� ����
Speed remains consistent

− β2(vi−v∇)� � �� �
Virtual leader speed tracking

− β3 j=Ni
N aij(p)(xj−xi−(hj−hi)� )� � �������� �������

Ma int a in relative position

+v�∇ (2)

Where β1 and β2 are normal numbers; ui
denotes the control input of UAV i , i.e., the

acceleration vector of UAV; vi and xi denote
the velocity and position vectors of UAVi , and
vj and xj are the same;x∇ and v∇ denote the
position and velocity vectors of VM,
respectively;hi and hj are the position vectors
of UAVi and j in expected formation, which are
calculated only once at the initial moment of
preparing to change the target formation; v�∇
denotes the control input of VM, i.e., the
acceleration vector of VM; is the acceleration
vector of VM, which is the acceleration vector
of VM, which is the acceleration vector of VM.
acceleration vector of the virtual long aircraft;β1
parameter term denotes the velocity consistency
term; β2 parameter term denotes the velocity
tracking of the UAV to the virtual long
aircraft;β3 parameter term denotes the position
consistency term between the UAVs; aij p
denotes the adjacency matrix formed by the
communication relationship of each UAV in the
UAV cluster. The above equation, the control
law of each UAV is the same.

3.2.2 Cluster alliance formation
The UAV cluster is divided into several coal-
-itions based on the principle of distance, and
when the distance between sub-networks in the
cluster is greater than the communication radius,
the network is said to be an independent
sub-network. A coali-
-tion is formed from an independent
sub-network
, as shown in Figure 6, in which the cluster
consists
of three independent sub-networks, then the
cluster is divided into three coalitions, and the
coalition-
-based localized communication method is
designed-
-ned.

Figure 6. Information Interaction Method
between Virtual Long Aircraft and Alliance
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By selecting the navigation information UAVs,
it is guaranteed that each alliance of the cluster
can directly obtain the information of the virtual
long aircraft at any moment, and the
non-navigation information UAVs only need to
interact with the other UAVs in the neighboring
domains, and indirectly obtain the information
of the virtual long aircraft from the navigation
information UAVs in the alliance through the
communication link, and the members of the
alliance track the expected relative position
vectors of the members of the alliance to form
the formation formation, and the speed matching
among the neighbors ensures that the final speed
of the alliance converges, and the final speed of
the alliance converges to the same speed. The
final velocity within the alliance converges,
while the number of alliances decreases over
time through alliance merging, and the final
cluster consists of a single alliance and the state
remains converged to ensure smooth mission
execution.
Accordingly, Fu et al. set up a simulation with
a cluster system of 5 UAVs and 25 UAVs (some
simulation results are selected in this paper):
starting from an unordered formation ( Figure 7),
assuming that the desired formation is a V
formation in the time interval [0s, 200s] ( Figure
8), and in the time interval [200s, 400s], the
formation task is changed, and the desired
formation is transformed to a horizontal
formation ( Figure 9).

Figure 7. Distribution of Initial Positions of
Cluster

Figure 8. Cluster Formation V-team
Formation

Figure 9. Trajectory Diagram of Cluster
V-Team-Horizontal-Team Switching

3.3 Cluster formation control algorithm
In practice, it is difficult to avoid the failure or
loss of UAVs in the cluster to leave the
formation. Although the UAV cluster system has
high robustness as a redundant system, if the
above UAV absence situation is not handled
accordingly, it will often reduce the overall
efficiency of the formation, and may even lead
to mission failure. Therefore, when UAV
damage occurs, the UAV cluster needs to have
the ability to autonomously restore the original
formation formation. The key issue of its
self-repair lies in how to utilize the distributed
control method to complete the formation
reconfiguration without destroying the network
topology relationship of the formation as much
as possible. Therefore, this paper proposes a
hierarchical recursive [11] based self-repair
algorithm, and the main algorithm framework is
shown in Figure 10. Before the cluster departs,
the relative position of each UAV in the
expected formation is specified in advance, and
the specific way is shown in Figure 11.

Figure 10. Recursive Self-repair Algorithm
Framework Diagram
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Figure 11. Relative Position Selection Criteria
3.3.1 The specific algorithm is as follows
Neighborhood Hierarchical Division Firstly, the
cluster expected formation is divided into
hierarchical divisions artificially and offline, and
then according to the positional differences of
each UAV in the expected formation, the UAV
nodes are assigned offline, and the specific
hierarchical division and assignment rules are
shown in Figure 12.

Figure 12. Neighborhood Hierarchical
Division

According to different queues, select the first
layer of the queue (generally the center node in
the queue) and designate the UAV as the No. 1
UAV of the current queue, as shown in Figure
11.
Taking the center node as the root and going
down along the communication link, take all the
one-layer neighbor nodes of the center node as
the second layer, and specify the expected
relative position of each UAV in order from left
to right, and then take all the neighbors of the
second-layer nodes to form the third layer, and
similarly stratify and specify the relative
position of all the nodes.
After completing the layering, the nodes are
assigned weights, and the weights of the nodes
are composed of the layer weights rq and the
intra-layer position weights rp , with the first

layer node having the largestrq , and the layers
decreasing downward rq in order, and rp
decreasing from the smallest to the largest in
order of the number. For any queue, the nodes
within the same layer rq are equal, rp are not
equal, andrq≫rp .
3.3.2 Repair subnet formation
For a node, the nodes in its subordinate layer
that have direct neighbor relationship with that
node are called the children of that node, and the
two are defined as parent-child relationship.
3.3.3 Weight update
After the formation of the repair subnet is
completed, each UAV in the repair subnet
calculates its own weight value according to the
current formation, and then sends the weight
value to the root node UAV of the repair subnet
through the link. The root node UAV sums the
received weights and its own weights and
updates its own weights.
In Figure 12, in the repair subnet composed of
nodes 4, 7, and 8, the weight value of node 4 is
equal to the sum of the weight values of all
nodes in the current repair subnet.
3.3.4 Missing position recursive repair
The sub-node UAV that damages the UAV needs
to repair the missing position, while the new
vacant position left by this sub-node UAV is
repaired by other sub-node UAVs.
Accordingly, Fu Xiaowei et al. simulated a
cluster system with 9 UAVs, assuming that the
desired formation is V formation in the time
interval [0s, 100s], and UAV damage randomly
occurs in the cluster in the time interval [100s,
200s], and UAV damage randomly occurs in the
cluster in the time interval [200s, 300s], and the
simulation results are shown in Figure 13 to
Figure 22. Figure 13 and Figure 15 show the 1st
and 2nd occurrence of damage in the cluster
respectively, and Figure 14 and Figure 18 show
the repair results of the 1st and 2nd damage in
the cluster respectively. It can be seen that when
there is a missing UAV, the cluster can
effectively repair the missing location. Figure 19
and Figure 20 show the repair trajectories for the
1st and 2nd damage, respectively. Figure 21 and
Figure 22 show the change curves of the speed
and yaw angle of the UAV at each moment,
respectively, and it can be seen that the speed
and yaw angle of the UAV can be well tracked
to the expected values. Thus, it shows the
effectiveness of the damage self-repair
algorithm method given in this paper.
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Figure 13. 1st Missing

Figure 14. 1st Repair

Figure 15. 2nd Missing

Figure 16. Competition between #3 and #4

Figure 17. Successful Competition

Figure 18. 2nd Repair

Figure 19. 1st Repair Trajectory

Figure 20. 2nd Repair Trajectory

Figure 21. Velocity Change Curve

Figure 22. YawAngle Variation Curve
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4. Conclusion Discussion
This paper focuses on the key technical pain
points of target tracking, trajectory planning and
cluster control of UAV swarms in complex
scenarios, refines the key findings based on the
core research results, and clarifies the value and
practical significance of each technological
breakthrough, which are analyzed as follows:

4.1 Multi-modal Fusion: Significantly
Improve Target Detection Robustness
In the complex environment, a single visual
detection algorithm is susceptible to light,
obstruction and other interferences, resulting in
misdetection and omission, which is difficult to
meet the reliability requirements of UAV
dynamic target tracking. In this paper, through
the multimodal fusion scheme of
"vision+posture", visual detection (such as
YOLO series algorithms) is combined with
human skeletal posture detection, so that visual
information can be used to locate the
approximate range of the target, and posture
features can be used to accurately match the
identity of the target, thus forming a dual
verification mechanism. This fusion not only
makes up for the scene adaptability defects of a
single visual algorithm, but also provides
reliable feature support for target behavior
prediction, effectively reduces the phenomenon
of false leakage detection, so that the detection
system can still maintain stable performance in
complex environments, and significantly
improves the robustness of target detection.

4.2 MINCO Trajectory Optimization:
Reducing Energy Consumption and
Acceleration Sudden Change
When a UAV is tracking a dynamic target,
traditional trajectory planning methods are often
coupled with spatial and temporal parameters
and are not fully adapted to the dynamics,
resulting in high flight energy consumption and
frequent acceleration variations, which affects
the stability of the airframe and the mission
endurance. The MINCO trajectory optimization
scheme adopted in this paper, by decoupling the
spatial and temporal parameters of the trajectory
and combining them with the UAV dynamics
constraints for planning, can reduce the control
energy loss to the maximum extent while
meeting the tracking timeliness; at the same time,
the optimization method can smooth the

trajectory changes, reduce the number of sudden
changes in the acceleration and improve the
stability of the UAV's flight to provide
trajectory-level guarantees for efficient, safe and
dynamic target tracking. This optimization
method can smooth the trajectory changes,
reduce the number of sudden changes in
acceleration, improve the stability of UAV flight,
and provide trajectory level guarantee for
efficient and safe dynamic target tracking.

4.3 Distributed Self-Repairing Algorithm:
Significantly Enhance the Anti-Destructive
Capability of the Cluster
UAV cluster in the switching topology network
environment, easy due to part of the node lost
connection led to connectivity break; and when
the UAV is damaged, the traditional centralized
control is difficult to quickly reconfigure the
formation, easy to cause task interruption. The
distributed self-repair algorithm proposed in this
paper guarantees connectivity when the cluster
faces topology switching by dividing the cluster
alliance by distance in advance, constructing a
neighborhood hierarchy model offline for the
expected formation, and reconfiguring the
formation autonomously by forming a repair
subnetwork and filling in the missing positions
recursively after the UAV is damaged. The
algorithm does not need to rely on the central
control node, can quickly respond to the
abnormal state of the cluster, effectively enhance
the destruction resistance of the UAV swarm,
and ensure that the mission can still continue to
advance under the equipment damage scenario.
However, it still has the following limitations:
Insufficient adaptability to extreme
environments
Although fusion reduces the interference of
conventional occlusion and illumination changes,
the feature extraction capability of the YOLO
series algorithms will still be significantly
attenuated under extreme weather such as strong
direct light, dense fog, and sand and dust, and
the accuracy of OpenPose for detecting the
skeletal keypoints of the lower-resolution targets
plummets, which makes it difficult to maintain a
stable dual-verification effect.
High dependence on the front-end path
The optimization effect of MINCO is highly
dependent on the constraints generated by the
front-end path search, and the delay in updating
the front-end path will lead to the constraints'
deviation from the actual environment if the
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dynamic obstacles in the complex environment
are dense, which will cause a pseudo-safety risk
for the trajectory optimized by MINCO; the
delay in the front-end path updating can lead to
the deviation in the actual environment. The risk
of "pseudo-safety" exists in the trajectory
optimized by MINCO;
At present, the field still needs in-depth research
in the following aspects:
Cross-modal learning (e.g. radar + vision
fusion).
Lightweight deployment of edge computing and
onboard AI chips.
Real-time path replanning in dynamic
environments.
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