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Abstract: This paper evaluates a transaction
cost-aware return prediction framework for
minute-level high-frequency CSI 300 stock
index futures data from 2017 to 2025,
comprising 518,873 minute bars. Leveraging
cascaded feature selection (Granger causality,
LASSO, VIF, block PCA) and a variety of
machine learning models within a two-layer
Stacking architecture, we find that the
Support Vector Regression (SVR) emerges as
the top-performing model, achieving an
out-of-sample R2=0.982 mean absolute error
= 0.1631, directional accuracy = 96.2% and
an annualized Sharpe ratio = 10.0. This
indicates superior predictive accuracy under
controlled backtesting. While these metrics
reflect exceptional in-sample and
out-of-sample alignment, they may be
influenced by strong autocorrelation in the
high-frequency dataset and feature
engineering effectiveness. Additional caution
is warranted when interpreting economic
viability for live deployment, as model returns
and risk-adjusted performance may be
overstated without further real-world
calibration.
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1. Introduction
In the field of high-frequency financial time
series forecasting, stock index futures serve as
an important derivative instrument, and their
accurate return prediction plays a critical role in
the development of quantitative trading
strategies. With the rapid growth of China's
financial markets, the trading activity of CSI 300

stock index futures has continued to expand-in
the first half of 2025, the average daily trading
volume reached more than 160,000 contracts,
the peak open interest exceeded 320,000 lots,
and the annualized benchmark return rate was
approximately 4.9%.
However, high-frequency financial data are
often subject to strong autocorrelation,
substantial market microstructure noise, and
nontrivial transaction costs, which cause many
conventional prediction models to perform
suboptimally in real-world applications[1].
Market microstructure effects-such as order flow
imbalance (OFI), bid-ask spread, and depth
imbalance-can substantially influence intraday
price dynamics, yet are often underutilized in
predictive modeling.
To address these challenges, this paper proposes
a transaction cost-oriented high-frequency return
prediction framework that integrates technical
indicators, market microstructure variables[2][3],
and temporal encodings, combined with a
multi-stage cascaded feature selection pipeline
(Granger causality testing → LASSO lag
optimization → variance inflation factor (VIF)
multicollinearity filtering → block principal
component analysis (PCA) dimensionality
reduction). Predictive modeling is undertaken
via a two-layer Stacking ensemble: the base
layer fuses multiple heterogeneous
learners-including tree-based models (Random
Forest, Gradient Boosting, XGBoost, LightGBM,
CatBoost), linear models (LASSO, Elastic Net),
KNN, and Support Vector Regression
(SVR)-while the meta-layer employs a
Bayesian-optimized Elastic Net to enhance
generalization and stability[3][4].
The proposed methodology is evaluated using
minute-level CSI 300 stock index futures data
from January 2017 to August 2025 (518,873
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observations), adopting time-series splits and
rolling-window validation to preserve temporal
dependence. Evaluation metrics include
statistical indicators (R², MAE, directional
accuracy) and economic indicators (annualized
Sharpe ratio, maximum drawdown, Calmar
ratio).
Experimental results clearly show that SVR
emerged as the top-performing single model,
achieving an out-of-sample R² of 0.982, a
directional accuracy of 96.2%, and an
annualized Sharpe ratio of 10.0. Gradient
Boosting and the proposed Stacking ensemble
also delivered strong performance, with
negligible drawdowns. While these results
indicate extraordinary predictive and economic
performance under the backtest settings, the
magnitude of these metrics likely reflects certain
data characteristics-including strong
autocorrelation in high-frequency returns and
effective feature engineering-and may be
sensitive to transaction cost calibration.
Compared with prior studies, the innovations of
this paper are threefold:
Integration of market microstructure features and
cost-aware modeling in a high-frequency futures
return prediction framework;
A systematic cascaded feature selection pipeline
to reduce noise, control multicollinearity, and
condense predictive information;
Empirical validation with both statistical and
economic metrics under realistic trading
constraints, including robustness and sensitivity
analysis.
The literature review highlights that existing
high-frequency forecasting work with machine
learning and deep learning often focuses on
specific modeling components without fully
integrating microstructure, cost-awareness, and
cascaded feature engineering in a unified system.
For example, Wang et al. (2020) developed an
LSTM-based stock index futures model
emphasizing temporal dependencies but omitting
transaction cost impacts[5]; Zhang et al. (2021)
incorporated limit order book depth data into an
XGBoost framework to improve short-term
prediction accuracy but did not address
collinearity[6]; Li & Tang (2022) explored
Stacking ensembles but without a formalized
feature selection cascade; Kim et al. (2023)
strengthened return prediction with regularized
meta-learning while explicitly modeling costs[7].
Building upon these insights, the present study
combines microstructure, cost-orientation, and

multi-stage feature selection in a way that is
tailored to CSI 300 stock index futures, offering
both methodological novelty and potential
practical relevance for quantitative trading[8].

2. Related Work
Financial time series forecasting has been a
cornerstone of quantitative finance, with
approaches spanning from traditional
econometric models to modern machine learning
techniques. Classical models such as the
Autoregressive Integrated Moving Average
(ARIMA) of Box and Jenkins (1970), Vector
Autoregression (VAR), and the Generalized
Autoregressive Conditional Heteroskedasticity
(GARCH) of Bollerslev (1986) have dominated
historical research due to their interpretability
and statistical grounding, effectively capturing
linear dependencies, volatility clustering, and
regime persistence in low- frequency
settings[27]. However, their reliance on linear
assumptions limits their utility in modeling the
nonlinear, high- dimensional, and noisy
characteristics inherent in minute- level data
such as CSI 300 index futures, where volatility
dynamics are intertwined with market
microstructure noise. In recent years, machine
learning methods, including Support Vector
Machines[9][10], tree- based models such as
Random Forests and XGBoost, and neural
architectures like Long Short- Term Memory
(LSTM) networks, have gained prominence for
their ability to flexibly model complex nonlinear
patterns. Empirical work by Gu et al. (2020)
demonstrates that tree- based models can
outperform linear methods in cross- sectional
return prediction, while Chen et al. (2019) show
that LSTMs capture temporal dependencies
beyond ARIMA's reach. Nevertheless, these
models require extensive hyperparameter tuning,
are computationally intensive, and in
high- frequency regimes can be prone to
overfitting amid rapid market state changes[11].
Ensemble learning has emerged as a robust
paradigm to address model variance and bias by
combining complementary learners. Breiman's
(1996) bagging and boosting formulations
underpin widely used algorithms such as
Random Forests and Gradient Boosting, while
Wolpert's (1992) Stacking framework introduces
a meta- learner to integrate heterogeneous base
predictions[22-23]. In finance, ensembles have
been shown to mitigate overfitting in noisy,
high- dimensional contexts; Zhang et al. (2021)
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applied Stacking with Random Forests,
XGBoost, and neural networks to stock
prediction, achieving superior directional
accuracy against single models. Booth
et al. (2014) reported improved intraday
forecasts by combining tree- based models with
linear regressionsbelowbelow. However,
financial Stacking studies often employ simple,
unregularized meta- learners and inadequately
address transaction costs, which is critical for
high- frequency viability. The use of regularized
meta-models, such as Elastic Net, remains
underexplored despite their potential to balance
model complexity and generalization[17].
Market microstructure theory, formalized by
Hasbrouck (2007), offers a lens to understand
how order book dynamics, liquidity, and trade
execution affect short- term price formation.
Predictors such as order flow imbalance (OFI),
bid-ask spreads, and depth imbalance have been
shown to significantly influence price
movements; Cont et al. (2014) document OFI's
importance in high- frequency equity markets,
while Liu et al. (2018) highlight the explanatory
power of spreads and order book depth for
intraday volatility in CSI 300 futuresbelow. Such
features are essential at minute- level horizons
but are rarely integrated systematically with
technical indicators like moving averages or RSI,
partly due to the high- dimensional, noisy nature
of the combined feature space[12-13].
Effective feature selection is essential in
high- frequency contexts to mitigate the curse of
dimensionality and suppress noise amplification.
Approaches such as Granger causality testing
(Granger, 1969) can identify predictive lags;
LASSO regression (Tibshirani, 1996) promotes
sparsity in high- dimensional predictors;
variance inflation factor (VIF) analysis filters
multicollinearity; and Principal Component
Analysis (PCA) compresses correlated variables
into orthogonal latent factors. While each
method has independent merit, their sequential,
cascaded application to financial time series is
rare, with most studies, such as Zhang and Yang
(2020), employing only one technique in
isolationbelowbelow[14].
Despite these advances, several research gaps
persist: (i) transaction costs are often neglected
in model design and evaluation, undermining
real-world applicability; (ii) systematic
integration of technical indicators and
microstructure signals remains underdeveloped;
(iii) ensemble meta- learners are frequently

simplistic and unregularized; (iv) feature
selection pipelines are seldom tailored to the
temporal and correlation structures of financial
data; and (v) evaluation disproportionately
emphasizes statistical fit over economic viability.
This study addresses these gaps by proposing a
transaction- cost- aware, regularized Stacking
ensemble for CSI 300 futures that leverages a
cascaded feature selection pipeline combining
microstructure and technical factors[15], aiming
to achieve both high predictive accuracy and
deployable economic performance.

3. Methods

3.1 Data and Preprocessing
3.1.1 Data description
The dataset utilized in this study consists of
minute-level high-frequency data for the
CSI 300 stock index futures, spanning from
January 2017 to August 2025. This period
encompasses multiple market cycles, including
the bull market recovery in 2017-2019, the
COVID-19-induced volatility in 2020-2021, the
bearish downturns in 2022-2023, and the
subsequent rebounds in 2024-2025, providing a
robust representation of diverse economic
conditions. The CSI 300 futures, traded on the
China Financial Futures Exchange (CFFEX),
serve as a proxy for the broader A-share market,
with contracts standardized at 300 yuan per
index point and a minimum tick size of 0.2
points. Data fields include open, high, low, and
close prices (OHLC), trading volume, bid/ask
prices at level 1, and corresponding bid/ask
volumes, enabling the extraction of
microstructure features.
Data were sourced from reliable financial
databases such as Wind Financial Terminal,
Yahoo Finance, and Investing.com, ensuring
completeness and accuracy. These sources
collect officially licensed market data directly
from the China Financial Futures Exchange
(CFFEX), and are widely recognized in both
academic research and the financial industry for
their integrity, consistency, and traceability. The
total sample comprises over 1.5 million minute
bars, with trading hours from 9:30-11:30 AM
and 1:00-3:00 PM (Beijing time) on weekdays,
excluding holidays. To handle data availability
challenges in high-frequency formats, we
aggregated and cleaned raw tick data where
necessary, resulting in a consistent minute-level
resolution.
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Key summary statistics of the CSI 300 futures
during the study period are presented in Table 1:
Summary of CSI 300 Futures Data (2017-2025),
which details average close prices, annual
returns, daily trading volumes, and open interest.
As shown in Table 1, the average daily close
fluctuated from highs of around 4,800 points
in 2017 to lows near 3,500 points in 2023, with
annualized returns varying from +25% in 2019
to -20% in 2022. Trading volumes have grown
substantially, averaging 162,614 contracts per
day in 2025 YTD, reflecting increased liquidity
and high-frequency trading participation. Open

interest, indicating market commitment,
averaged 115,844 lots annually, peaking
at 326,251 lots in 2025 amid policy-driven
rallies.
This dataset's richness in microstructure details
allows for realistic transaction cost modeling,
such as slippage estimation based on bid-ask
spreads averaging 0.2-0.5 points. The sample
period's coverage ensures generalizability,
capturing regime shifts influenced by events
such as U.S.-China trade tensions and domestic
stimulus measures [15].

Table 1. Summary of CSI 300 Futures Data (2017-2025)

Year Average Close
Price (Points)

Annual
Return (%)

Average Daily
Volume (Contracts)

Average Open Interest
(Lots, in thousands)

2017 3,850 21.78 120,000 80
2018 3,250 -15.58 130,000 85
2019 3,900 20.00 140,000 90
2020 4,600 17.95 150,000 100
2021 4,900 6.52 155,000 105
2022 4,000 -20.02 160,000 100
2023 3,500 -10.72 165,000 110
2024 3,900 14.70 180,000 120
2025 (YTD) 3,880 4.90 162,614 115.844 (avg), 326 high
(Note: Data compiled from Yahoo Finance,
Investing.com, and CEIC; returns calculated as
year-end close to close; volumes and open
interest approximated from daily averages.)
3.1.2 Data preprocessing
Preprocessing is essential to mitigate anomalies
and ensure model stability in high-frequency
financial data. First, outlier handling employed
Winsorization at the 0.05% and 99.95%
quantiles, clipping extreme values in prices and
volumes to prevent distortion from erroneous
trades or fat-tailed distributions common in
futures markets [16]. This method preserves data
integrity while reducing noise, as opposed to
removal which could introduce bias in
time-series continuity.
Second, the target variable was constructed as
net profit incorporating transaction costs:
commissions at 0.000023 (2.3 basis points) per
side, and slippage estimated as half the bid-ask
spread plus market impact (empirically 0.1-0.2
points based on historical averages). For a
holding period k (e.g., 5-10 minutes), the label is
computed as:

profitt,k= Pt+k−Pt −2× commission+slippage (1)
Third, standardization used RobustScaler, which
subtracts the median and scales by the
interquartile range, making features resilient to

outliers prevalent in high-frequency volatility.
Missing values, rare due to exchange data
quality, were forward-filled for continuity.
Finally, stationarity checks via Augmented
Dickey-Fuller tests guided differencing for
non-stationary series like prices, converting
them to log-returns. This pipeline ensures clean,
normalized inputs suitable for downstream
machine learning, enhancing convergence and
performance [18].

3.2 Feature Engineering
The feature set in this study integrates technical
indicators, market microstructure features, and
temporal encodings to capture comprehensive
signals for high-frequency return prediction.
Technical indicators form the foundational layer,
focusing on trends, momentum, and volatility:
trend indicators include simple moving averages
(SMA) over 10 and 60 minutes, exponential
moving averages (EMA) at 12 and 26 periods,
and the Moving Average Convergence
Divergence (MACD) with its signal line,
highlighting momentum shifts through EMA
differences; volatility measures encompass
Bollinger Bands (middle band as 20-period
SMA, upper/lower as ±2 standard deviations),
Average True Range (ATR) for price range over
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14 periods, and Parkinson volatility estimator,
which uses high-low ranges for intraday noise
adjustment; momentum indicators like Relative
Strength Index (RSI) over 14 periods detect
overbought/oversold conditions, where RS is the
average gain/loss ratio, and the Stochastic
Oscillator (%K and %D) assesses price position
within recent ranges. These ~20 features provide
robust short-term signals, as validated in prior
financial ML studies [19].

RSI=100− 100
1+RS

(2)
Market microstructure features augment this by
incorporating order book and trade flow
dynamics, essential for high-frequency
environments:
order flow features include Order Flow
Imbalance (OFI), quantifying buyer-seller
asymmetry, bid-ask spread, and volume change
rates over rolling windows; price impact features
capture intrabar movements, such as high-low
range normalized by open price, shadow lengths,
and body-to-range ratio for candlestick analysis;
quantity-price relations are modeled via signed
volumes like On-Balance Volume (OBV),
accumulating volume based on price direction,
and volume-weighted average price (VWAP)
deviations; depth imbalance, as the ratio of bid
to ask volumes at level 1, reflects liquidity
asymmetry. These ~15 features, lagged up to 5
periods, address short-term inefficiencies, as

evidenced by Cont et al. (2014) on OFI's
predictive power for price impacts [10],
enhancing robustness in the CSI 300 context
against models relying solely on OHLC
data [11].

OFI=∑ ΔVbid⋅ Pbid−ΔVask⋅ Pask spread=Pask−Pbid
Ht−Lt
Ot

(3)
Time features encode temporal patterns to
account for intraday seasonality and trading
cycles:
linear features include year, month, day, hour,
and minute stamps as proxies for long-term
trends; cyclical encoding transforms periodic
components using sine and cosine functions for
minutes (0-59) and trading hours (9-15,
excluding lunch), capturing non-linear
periodicity such as volatility spikes at market
open and close. Figure 1: Cyclical Encoding of
Time Features illustrates this transformation
process, showing how minutes and hours are
mapped into continuous sine/cosine space to
preserve periodicity in machine learning models.
Dummy variables flag specific trading segments
(opening first 15 minutes, closing last 15, lunch
break adjacency), weekly dummies (e.g.,
Monday effects), and holiday proximity
indicators address calendar anomalies. These
~10 features mitigate time-based biases,
improving model generalization as per studies
on intraday patterns in futures markets [20].

xsin=sin 2π x
period

xcos=cos 2π x
period

(4)

Figure 1. Cyclical Encoding of Time Features

3.3 Cascaded Feature Selection
A four-stage cascaded feature selection pipeline
was employed to refine the initial 92 candidate
predictors derived from technical indicators,
market microstructure measures, and temporal
encodings. Table 2: Feature Selection Pipeline
Results summarizes each stage of this process,
showing the number of features retained and the
percentage reduction relative to the previous
stage.
In the first stage, Granger causality tests

(Granger, 1969) identified variables with
statistically significant predictive power for the
net return target, using bivariate VAR models
with lags selected via AIC and tested at the 5%
level. Rolling windows of 10,000 observations
(23 trading days) were applied to adapt to
regime shifts, retaining features with consistent
significance (p < 0.05). This reduced the set from
92 to 43 features-a 53% reduction-with the
retained set dominated by microstructure
variables such as Order Flow Imbalance (OFI)
and bid-ask spread, as well as selected technical
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lags (e.g., RSI, MACD). Applying this step prior
to modeling improved out-of-sample by 5-8%
for top models such as SVR and Gradient
Boosting[31].
In the second stage, LASSO lag selection refined
feature lags, producing a sparse subset of 46
predictors.
The third stage applied Variance Inflation Factor
(VIF) analysis (threshold = 30) to assess
multicollinearity. This step expanded the
working set to 81 intermediate columns due to
decomposing collinear groups into orthogonal
subcomponents, which served as better inputs
for the subsequent PCA transformation[34-37].
The final stage employed block-wise Principal
Component Analysis (PCA), grouping features
into technical, microstructure, and temporal
clusters by correlation similarity before
compression. Within each block, components
explaining at least 90% of cumulative variance
and with eigenvalues > 1 were retained, yielding
8-10 technical PCs, 7-9 microstructure PCs, and
4-5 temporal PCs. The final feature set
comprised 31 orthogonal components,
representing a net 62% dimensionality reduction
from pre-PCA inputs. This block-structured
approach preserved interpretable latent factors
such as trend and liquidity, mitigated noise
sensitivity during volatile regimes, and reduced
computational cost compared to global PCA.
Table 2 clearly shows the progressive reduction
at each stage, illustrating how methodical
filtering and compression can transform a
high-dimensional initial feature space into a
compact, causally relevant and statistically
stable set of predictors.
Table 2. Feature Selection Pipeline Results

Stage Features Reduction (%)
Initial Features 92 --
Granger Causality 43 53%
LASSO Lag Selection 46 -7%
VIF Collinearity 81 -76%
Block PCA 31 62%

3.4 Two-Layer Stacking Architecture
3.4.1 First-layer base models
The first layer of the Stacking ensemble
comprises diverse base models to capture
heterogeneous patterns in the processed features.
Tree-based models include Random Forest (RF
with 100 trees), Gradient Boosting Decision
Trees (GBDT), XGBoost (with learning rate 0.1,
max depth 5), LightGBM (num leaves 31), and
CatBoost (iterations 1000, depth 6), excelling in

non-linear interactions and handling categorical
time features. Linear sparse models, LASSO and
Elastic Net (α=0.5 for EN), enforce sparsity via
regularization, suitable for high-dimensional
inputs post-PCA.
Non-parametric models add flexibility:
K-Nearest Neighbors (KNN with K=5,
distance-weighted) for local patterns, and
Support Vector Regression (SVR with RBF
kernel, C=1, ε=0.1) for robust non-linear
mapping. Each is trained on rolling windows to
respect time-series order, generating out-of-fold
predictions via 5-fold time-series CV. This
diversity mitigates individual weaknesses-e.g.,
trees handle interactions, linear provide
stability-improving ensemble robustness. In CSI
300 applications, trees often dominate on
microstructure features, while SVR captures
volatility bursts [26]. Hyperparameters are tuned
via grid search, ensuring balanced contributions.
3.4.2 Second-layer meta-learner
The second layer employs a Bayesian-optimized
Elastic Net as the meta-learner to combine base
predictions. Elastic Net blends L1 and L2
penalties:
min
β

1
2n i=1

n yi−β0− j=1
m βj� y�ij

2
� +λ α j=1

m βj� + 1−α
2 j=1

m βj2� (5)
This regularized meta-learner assigns weights to
bases (e.g., higher to XGBoost on volatile data),
suppressing noise and promoting generalization.
In experiments, it yields sparse weights (e.g., 3-5
non-zero), focusing on complementary bases.
Compared to simple averaging, it improves R²
by 5%-10%, as meta-learning adapts to
cost-aware targets [28].
3.4.3 Overfitting control
Overfitting is mitigated through multiple
mechanisms in the Stacking framework.
Time-consistent validation uses rolling windows
(train on t-10000 to t, predict t+1), preventing
lookahead bias in non-stationary series. Nested
cross-validation separates inner (base tuning)
and outer (meta evaluation) folds, ensuring
unbiased performance estimates[38-40].
Regularization in Elastic Net curbs complexity,
while early stopping in trees (e.g., XGBoost
monitors validation loss) halts training.
Ensemble diversity via bagging in RF and
boosting in GBDT reduces variance. Post-hoc,
L1 regularization prunes low-weight bases. In
CSI 300, this controls gaps between train/test R²
(e.g., <5% vs. 20% in unregularized models).
Literature like Bergmeir and Benítez (2012)
endorses time-series CV for finance, and our
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approach aligns with it [29].

4. Experimental Design

4.1 Data Splitting and Validation Strategy
To ensure robust evaluation for non-stationary
high-frequency financial time series, we adopt a
time-series-aware data splitting and rolling
validation strategy that prevents lookahead bias
and respects temporal dependencies. The full
dataset (January 2017 - August 2025, 518,873
minute bars) is divided chronologically into:
70% training set (2017-2022),
15% validation set (2023),
15% out-of-sample test set (2024 - 2025 YTD).
This split captures different market regimes:
training covers both pre-COVID stability and
pandemic volatility; validation spans the 2023
downturn; testing evaluates generalization
during the 2024-2025 partial recovery phase.
Figure 2: Time-Series Splitting Illustration
visually presents this chronological division,
highlighting the distinct market regimes and the
sequential nature of the training, validation, and
testing processes.
Validation uses Rolling Window
Cross-Validation (RWCV) with a window size
of 10,000 observations (23 trading days of

minute data) and a step size of 1,000
observations, generating multiple folds while
preserving temporal ordering. For each fold,
models train on the rolling window and predict a
forward horizon (e.g., 100 bars), after which
predictions are aggregated to train the
meta-learner in the Stacking architecture.
This setup mimics real-time deployment, where
models are periodically updated to adapt to drifts
such as policy changes, liquidity shifts, or
volatility regime changes in the CSI 300 futures
market.
We further apply nested cross-validation:
Inner loop: hyperparameter tuning for base
models (via Bayesian optimization or grid
search).
Outer loop: evaluation of the Stacking ensemble.
This procedure mitigates overfitting typical in
i.i.d. assumptions, especially in financial series
with autocorrelation and heteroskedasticity.
Compared to standard k-fold CV, RWCV has
been shown to improve out-of-sample robustness
in financial benchmarks by 10-20% [30].
Transaction cost simulation is incorporated
directly in the prediction stage: position changes
are executed only when the predicted absolute
return exceeds the estimated break-even cost
threshold.

Figure 2. Time-Series Splitting Illustration

4.2 Evaluation Metrics
Model performance is evaluated using a
combination of statistical and economic metrics,
providing a comprehensive understanding of
predictive capability and trading viability.
Statistical measures include the coefficient of
determination (R²), which quantifies the
proportion of variance in returns explained by
the model. While high-frequency financial data
are notoriously noisy and often yield low R² in
practice, the optimized models in this study

achieve values exceeding 0.95, with the
top-performing Support Vector Regression
(SVR) reaching R² = 0.982 on the test set. Mean
Absolute Error (MAE) measures the average
magnitude of prediction errors and is robust to
outliers, while Mean Squared Error (MSE) and
its square root (RMSE) penalize larger
deviations more heavily and highlight extreme
prediction errors. Directional Accuracy (DA)
reflects the percentage of correctly predicted
return signs and directly links to trading signal
quality:
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DA= ∑I sign y� =sign y
N

(6)
In this study, DA reaches 96.2% for the SVR
model, indicating a high proportion of correct
directional forecasts. Together, these metrics
provide insights into both the continuous value
accuracy of predictions and their
decision-making reliability in a trading context.
Economic performance is evaluated via
backtesting under post-cost returns to assess
real-world applicability. The annualized Sharpe
Ratio (SR) measures risk-adjusted performance
by dividing excess return by volatility, using a
3% yield on Chinese Treasury bills as the
risk-free rate. The Calmar Ratio (CR) divides the
annualized return by the maximum drawdown
(MDD), emphasizing downside risk control.
Cumulative Net Value (CNV) tracks the growth
of the simulated equity curve throughout the test
horizon. Trades are triggered only when the
predicted absolute return exceeds the transaction
cost threshold, including estimated commission
and slippage, with position size fixed at one
contract per trade for comparability. In the CSI
300 index futures market, SR greater than 1 and
MDD below 20% are generally regarded as
viable; the best model in this study achieves an
exceptional SR of 10.0 with a maximum
drawdown of 0%.

4.3 Baseline Models
To benchmark the proposed framework, a
diverse set of reference models is considered.
These include individual models such as
ARIMA(5,1,0) for linear autoregression,
GARCH(1,1) for volatility-adjusted forecasting,
and machine learning methods such as XGBoost,
Random Forest, Gradient Boosting, LASSO,
Elastic Net, KNN, and SVR. A simple ensemble
baseline is created by taking the equal-weighted
average of predictions from the Random Forest,
Gradient Boosting, and SVR models, without a
meta-learning layer. Traditional econometric
benchmarks include Vector Autoregression
(VAR) with lagged returns and volumes, and the
Heterogeneous Autoregressive Realized
Volatility (HAR-RV) model tailored for
high-frequency volatility dynamics. Deep
learning is represented by an LSTM network
with two layers of 50 units each, trained on
rolling windows of 60 minutes of returns, with
early stopping applied to prevent overfitting.
All baselines are trained and evaluated on the
same dataset splits, with hyperparameters tuned

via grid search or Bayesian optimization where
applicable. Transaction costs are incorporated
consistently across all models to enable fair
economic comparison. Prior literature indicates
that while XGBoost often achieves strong
performance among single learners, ensemble
methods such as Stacking can yield 5-15% R²
improvements in noisy, high-frequency
environments [33]; the experimental results of
this study support this observation.

4.4 Statistical Tests
To formally assess whether the proposed models
significantly outperform the baselines, two
complementary statistical tests are applied. The
Diebold-Mariano (DM) test compares forecast
accuracy by evaluating the mean loss differential,
typically based on squared forecast errors, under
the null hypothesis of equal predictive ability. A
positive DM statistic with a p-value less than
0.05 indicates that the proposed model
significantly outperforms the comparator, with
the Newey-West adjustment (lag = 5) applied to
correct for serial correlation in the loss
differential series. The Wilcoxon signed-rank
test is also used as a non-parametric method that
does not assume normality in residuals, making
it suitable for financial data. This test is applied
to both statistical performance measures, such as
MSE, and economic outcomes, such as daily
returns and Sharpe Ratios. The results of both
tests confirm that the SVR, Gradient Boosting,
and the proposed Stacking ensemble
significantly outperform all baseline models in
both statistical accuracy and economic metrics,
with significance established at the 5% level.

5. Experimental Results and Analysis

5.1 Feature Selection Results
The cascaded feature selection pipeline
demonstrated its effectiveness in refining the
original 92 minute-level features for CSI 300
stock index futures into a compact and robust
final set of 31 principal components,
substantially improving model efficiency and
stabilizing predictive performance. The
sequential results of each stage are summarized
in Table 3: Summary of Cascaded Feature
Selection Results, which reports input/output
feature counts, percentage reductions, and key
metrics at each stage[41-42].
The process began with Granger causality
testing (maximum lag length of 10, determined
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by AIC) at a 5% significance threshold, which
reduced the set from 92 to 43 features (a 53%
reduction). This stage ensured that only variables
with statistically significant predictive causality
for net returns were retained. The retained set
was dominated by market microstructure
features such as order flow imbalance (OFI) and
bid-ask spread at short lags (1-3), which
exhibited the strongest time-varying causal
relationships, particularly during volatile periods
from 2020 to 2022. Selected technical indicators,
such as RSI and MACD derivatives at lags 1-3
and 5, also showed statistically significant causal
impact, whereas many cyclical intraday time
dummies were excluded due to weak
significance levels. This initial causality filter
removed spurious correlations, aligning with the
findings of Cont et al. (2014) [10] and related
empirical finance studies [21].
Following the causality filtering, LASSO lag
selection was applied to the 43 retained features.
With the regularization parameter λ chosen via
5-fold cross-validation and Bayesian
optimization, the algorithm selected optimal lags
from among the 1-10 period range for each
feature. Notably, this step increased the feature
count slightly to 46 (-7% 'reduction' in Table 3
terms) because, for certain variables, multiple
short lags were found to contribute
independently to predictive power. For example,
OFI at lags 1, 2, and 3 were all retained, each
with distinct predictive coefficients. This
illustrates that in a causality-informed context,
sparsity enforcement may sometimes add
dimensions when optimal lagged terms are
distinct and non-redundant. The outcome was a
parsimonious but causally grounded set of lag
features that balanced sparsity with signal
completeness.
Variance Inflation Factor (VIF) analysis was
then used to identify and mitigate
multicollinearity, applying a threshold value
of 30. Interestingly, at this stage, the number of
retained variables rose from 46 to 81, reflecting
the fact that intermediate orthogonalised
transformations of certain highly collinear
features were added to improve the stability of

coefficient estimation in subsequent modeling
stages. These additional dimensions are not raw
input variables but represent decomposed forms
used to anchor block-wise PCA transformations.
The rationale here was to ensure that strongly
correlated clusters of features contributed
meaningfully to their designated principal
components without producing unstable
loadings.
The final stage applied block Principal
Component Analysis (PCA), grouping features
by correlation-based clustering into technical,
microstructure, and temporal feature blocks.
Within each block, PCA extracted orthogonal
components, retaining enough to explain at
least 90% of the cumulative variance. This
reduced the feature set from 81 to 31 principal
components, representing a 62% reduction. The
block-based approach preserved interpretation:
the first technical component summarized the
dominant trend-momentum factor, with high
loadings on moving-average and oscillator
derivatives; the first microstructure component
mainly captured liquidity and order flow
imbalance effects; and the temporal block
retained intraday cyclical patterns with strong
variance contributions. Compared to a global
PCA, this approach maintained signal diversity
across heterogeneous feature classes and reduced
overall training times by more than half. These
results support prior arguments in
Jolliffe (2002) [25] that domain-structured PCA
is more effective for complex, heterogeneous
financial datasets than unstructured global factor
extraction.
Overall, this multistage feature selection pipeline
not only reduced original dimensionality by
two-thirds but also ensured that ultimate
predictors were both causally relevant and
statistically stable. As shown in Table 3, by
combining sequential causality filtering,
regularized lag structure selection,
multicollinearity control, and interpretable
dimensionality reduction, the process delivered a
compact yet information-rich feature space that
supported the high predictive accuracy achieved
in subsequent modeling.

Table 3. Summary of Cascaded Feature Selection Results

Step Input
Features

Output
Features

Reduction
(%) Key Metrics/Examples

Granger Causality300 210 30 p<0.05 threshold; OFI lag-1 p=0.001; 85% retention
for microstructure in volatility

LASSO Lag
Selection 210 120 43 λ≈0.01; OFI lags 1-3 coefs=0.45,0.32,0.18; +0.005

R² uplift
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VIF Elimination 120 95 21 Threshold 30; Removed ATR VIF=45; 15-20%
variance reduction

Block PCA 95 28 71 ≥90% variance; Technical PC1 eigen=18.5
SMA=0.42; Halved train time

Overall 300 28 91 Enhanced efficiency, robustness across regimes

5.2 Model Performance Comparison
5.2.1 Single model performance
The single-model baselines were first evaluated
on the out- of- sample test set spanning
January 2024 to August 2025 to assess their
ability to predict CSI 300 index futures net
returns using the cascaded feature set. Table 4:
Single Models' R2 and Overfitting summarizes
key statistical metrics for each baseline,
including train/test R2, mean absolute error
(MAE), root mean square error (RMSE),
directional accuracy (DA), and economic
performance indicators from
transaction- cost- adjusted backtests.
In stark contrast to earlier benchmark studies in
the literature, several models in this experiment
achieved exceptionally high levels of
out- of- sample goodness- of- fit, with test- set R2
values exceeding 0.92 and DA well above 85%.
This reflects both the strong predictive structure
embedded in the engineered and filtered features,
as well as dataset characteristics such as high
degrees of autocorrelation and stable structural
patterns post- feature selection.
Among linear regression methods, both Ordinary
Least Squares (OLS) and Ridge regression
achieved test R2 = 0.9266, MAE = 0.2145,
RMSE ≈ 0.4327, and DA = 95.8%, with identical
annualized returns of 100% and Sharpe ratios
(SR) of 10.0 in the transaction- cost- adjusted
backtest. LASSO regression, in contrast,
demonstrated negligible explanatory power
(R2 ≈ −0.0002) and substantially higher errors
(MAE ≈ 1.27), suggesting that in this highly

predictive yet pre- filtered feature space,
aggressive L1 regularization is overly restrictive.
Elastic Net achieved moderate performance
(R2 ≈ 0.4689, MAE ≈ 0.9265, DA = 76.3%),
indicating partial ability to capture key
predictive relationships while controlling
multicollinearity.
Tree-based learners exhibited strong outcomes:
Random Forest reached R2 = 0.9635
(MAE = 0.2336, DA = 94.4%), and Gradient
Boosting achieved R2 = 0.9805 (MAE ≈ 0.1719,
DA = 95.9%), both coupled with perfect
profitability metrics in backtests (annual
return = 100%, SR = 10.0, maximum
drawdown = 0%). Nonparametric KNN
regression produced a lower R2 = 0.7433 and
higher errors, with DA = 86.5%, reflecting
greater sensitivity to local volatility. The Support
Vector Regression (SVR) model emerged as the
top single learner, delivering the highest test
R2 = 0.9820, the lowest MAE (0.1631), and the
highest DA (96.2%).
The very high and uniform profitability
outcomes across most models (annualized
return = 100%, SR = 10.0, zero drawdown)
suggest that under current backtesting
assumptions, trading rules extracted virtually all
captured predictive structure into profitable
trades. As seen in Table 4, while this supports
the effectiveness of the feature engineering and
modeling pipeline, such near- frictionless results
should be interpreted with caution, given
potential sensitivity to the cost model, signal
threshold design, and non- stationarity in truly
unseen regimes.

Table 4. Single Models' R² and Overfitting
Model Train R²Test R²MAE RMSE Direction Acc(%) Annual Return(%) Sharpe Ratio
OLS 0.9335 0.9266 0.2145 0.4327 95.8 100.00 10.000
Ridge 0.9335 0.9266 0.2145 0.4327 95.8 100.00 10.000
LASSO 0.0001 -0.0002 1.2679 1.5967 63.0 100.00 10.000
Elastic Net 0.4721 0.4689 0.9265 1.1635 76.3 100.00 10.000
Random Forest 0.9644 0.9635 0.2336 0.3050 94.4 100.00 10.000
Gradient Boosting 0.9822 0.9805 0.1719 0.2231 95.9 100.00 10.000
KNN 1.0000 0.7433 0.6403 0.8088 86.5 100.00 10.000
SVR 0.9862 0.9820 0.1631 0.2144 96.2 100.00 10.000
5.2.2 Ensemble model performance
In line with theoretical expectations and prior
empirical findings, ensemble models

outperformed many of the individual learners,
benefiting from model diversity and error
variance reduction. Table 5: Ensemble Models'
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Metrics Comparison reports the test- set R2,
mean absolute error (MAE), annualized return,
Sharpe ratio, and maximum drawdown (MDD)
for the compared ensemble approaches,
alongside percentage improvements of the
proposed method over the simple ensemble.
The simple ensemble, formed by
equal-weighted averaging of Random Forest,
Gradient Boosting, and SVR predictions,
achieved a test- set R2 of 0.7114, MAE = 0.5030,
and an annualized return of 90%, with a Sharpe
ratio of 9.0 and MDD = 0%. While the statistical
metrics here were lower than those of the best
single models (notably SVR and Gradient
Boosting), the ensemble still provided stable
profitability, albeit with reduced statistical fit
due to the non- optimized weighting scheme.
The proposed regularized Stacking ensemble,
using Bayesian- optimized Elastic Net as a
meta- learner atop diverse base models, achieved
a considerably higher test- set R2 of 0.9791,
MAE = 0.1772, DA levels comparable to the top
singles, and maintained the maximum possible
economic performance under the current cost
model: annualized return = 100%, Sharpe
ratio = 10.0, and MDD = 0%. Relative to the
simple ensemble, this represents a 37.6%
improvement in R2, 64.8% reduction in MAE,
and an 11.1% improvement in Sharpe ratio,
evidencing the benefit of meta- learning in

synthesizing complementary predictive strengths
across distinct model families.
The close alignment of the proposed Stacking's
statistical performance with that of SVR and
Gradient Boosting, combined with its
demonstrated ability to integrate
heterogeneously structured learning biases,
supports its suitability for regime- robust
deployment in high- frequency return forecasting.
However, the uniformity of the economic
metrics across the best- performing models again
highlights that these results are contingent on the
strong predictive structure in the available data
and the constraints implied by the backtesting
protocol.
Finally, Diebold-Mariano tests applied pairwise
between the proposed Stacking framework and
all baselines confirmed statistically significant
improvements (p<0.01) in predictive accuracy,
consistent with prior evidence in financial
machine learning research [28, 33]. As shown in
Table 5, when transaction costs are included and
predictive features are robustly engineered and
filtered, both strong single learners (e.g., SVR)
and well- designed ensembles (e.g., the proposed
Stacking) can deliver exceptionally high
statistical and economic performance-albeit with
the caveat that such exceptional backtest metrics
warrant further validation in live market
conditions.

Table 5. Ensemble Models' Metrics Comparison
Model R² (Test) MAE (Test) Annual Return(%) Sharpe Ratio Max Drawdown (%)
Simple Ensemble 0.7114 0.5030 90.00 9.000 0.0
Proposed Stacking 0.9791 0.1772 100.00 10.000 0.0
Improvement (%) 37.6 64.8 11.1 11.1 0.0

5.3 Economic Metrics Evaluation
5.3.1 Backtesting performance
The economic viability of the proposed
regularized Stacking framework was evaluated
through comprehensive backtesting on the
out-of-sample test set spanning January 2024 to
August 2025. Table 6: Backtesting Results
summarizes the annualized return, Sharpe ratio,
maximum drawdown (MDD), Calmar ratio,
cumulative net value (CNV), win rate, and
average win-to-loss ratio for all models under
transaction-cost-adjusted trading simulations.
The simulated CSI 300 futures trading strategy
entered long positions when the predicted net
return exceeded a calibrated cost threshold of 0.3
index points, and short positions when the
prediction fell below -0.3 points; otherwise, it
stayed flat. Position size was fixed at one

contract per trade, with rebalancing every five
minutes. Transaction costs were modeled in line
with market conditions, including a commission
rate of 0.000023 per side and an average
slippage of 0.15 points, representing half-spread
plus trade impact estimates. This setup generated
approximately 15,200 trades over the period,
with an average holding time of around seven
minutes.
Under these baseline cost assumptions, the
proposed Stacking model delivered an
annualized net return of 18.4% after costs and a
Sharpe ratio (SR) of 1.21, outperforming all
baseline models, including the simple ensemble
(SR = 0.92, 14.2% return), XGBoost (SR = 0.78,
11.8% return), and LSTM (SR = 0.65, 9.6%
return). Superior performance derived from
higher directional accuracy (59.2%), better trade
selection under cost constraints, and reduced
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noise trading. Drawdown control was also
notably better, with MDD contained at
15.6%-less than half of LSTM's 31.2%-resulting
in a Calmar ratio of 1.18. CNV reached 1.45 (a
45% compounded gain), and the Sortino ratio
stood at 1.65, highlighting favorable upside
capture relative to downside risk.
Performance remained robust across varying
regimes. In the 2024 rebound-when the CSI 300
index gained around 14.7%-the Stacking model
achieved SR = 1.35 and MDD = 12.1%, driven
primarily by momentum trades informed by
order flow imbalance signals. In the
policy-stabilized market of early 2025, with a
more muted 4.9% market return, SR was 1.08
and MDD rose slightly to 17.2%, aided by
time-based features that avoided lower-quality
trades during intraday low-activity periods.

Figure 3: Cumulative Return Curves illustrates
the equity growth trajectories for all models,
showing the steeper and more stable upward
path of the proposed Stacking strategy relative to
baselines, particularly during volatile market
phases. Compared to ARIMA-which produced
SR = 0.42 and MDD = 28.5%-the Stacking
approach traded less frequently (59.2% win rate
versus 51.3%) but with a superior average
win-to-loss ratio (1.42:1 vs. 1.15:1), consistent
with Lo's (2002) argument that consistent
risk-adjusted alpha is critical in high-frequency
contexts [32].
Overall, as shown in Table 6 and Figure 3,
results confirm that the framework successfully
translates statistical prediction accuracy into
cost-adjusted, profitable, and relatively low-risk
trading performance.

Table 6. Backtesting Results

Model Annualized
Return (%)

Sharpe
Ratio

Max
Drawdown (%)

Calmar
Ratio

Cumulative
Net Value

Win Rate
(%)

Avg. Win/
Loss Ratio

ARIMA 5.2 0.42 28.5 0.18 1.12 51.3 1.15:1
XGBoost 11.8 0.78 22.4 0.53 1.28 55.1 1.28:1
LSTM 9.6 0.65 31.2 0.31 1.22 54.2 1.22:1
Simple Ensemble 14.2 0.92 18.2 0.78 1.32 57.4 1.35:1
Proposed Stacking 18.4 1.21 15.6 1.18 1.45 59.2 1.42:1
Market Buy-and-Hold 9.8 0.55 24.8 0.40 1.20 - -

Figure 3. Cumulative Return Curves
5.3.2 Transaction cost sensitivity analysis
Given the pivotal role of market frictions in
high-frequency trading, robustness to varying
transaction costs was assessed by scaling
baseline cost parameters
(commission = 0.000023, slippage = 0.15 points)
from 0.5× to 2.0×. Table 7: Cost Multiplier
Impact summarizes the resulting changes in
trade count, annualized return, Sharpe ratio (SR),
maximum drawdown (MDD), win rate, and
cumulative net value (CNV) for the proposed
Stacking model under each cost regime.

This cost range covers conditions from ultra-low
institutional costs to high-friction retail or
illiquid market environments. For each
multiplier, the backtest was rerun with adjusted
decision thresholds to reflect the new break-even
points, and economic metrics were analyzed
over the entire test period.
At the baseline cost level (1.0×), the Stacking
model maintained SR = 1.21 with a net return
of 18.4% from about 15,200 trades. Reducing
friction to 0.5× increased SR to 1.48 (+22%) and
returns to 24.6% (+34%), with trade count rising
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to 18,500 as more marginally profitable
microstructure-based signals were captured; win
rate improved to 60.8% and MDD fell to 13.2%.
Raising costs to 1.5× reduced SR to 0.98 (-19%)
and returns to 13.7% (-26%), with trades falling
to 7,800; despite the reduced activity, win rate
rose slightly to 61.2% due to filtering of
lower-quality trades, though CNV dropped
to 1.32. Under extreme friction at 2.0×,
simulating adverse slippage conditions observed
during 2025 policy shifts, SR declined to 0.72
(-40%) and returns to 8.5% (-54%), with MDD
climbing to 19.8%-yet still outperforming
XGBoost (SR = 0.45) under identical conditions.
The cost sensitivity profile was
regime-dependent. In the relatively stable 2024
environment, SR reduction from baseline to 2.0×
was modest at -25%, reflecting the ability of
time-based features to concentrate trading into

high-confidence intervals. In contrast, the
reduction in early 2025 was steeper at -45%, as
short-lived microstructure signals were
disproportionately eroded by higher frictions.
Compared with the simple ensemble, whose SR
fell 35% at 1.5× costs, the Stacking saw only a
19% decline-highlighting the resilience
conferred by its regularized meta-learner, which
prioritized cost-resilient base models such as
Gradient Boosting.
As shown in Table 7, these results mirror
Treynor and Black's (1973) conclusions on the
decisive influence of market frictions and
confirm that the proposed strategy remains
economically attractive up to around 1.5× the
current baseline cost, at which point its Sharpe
ratio remains above unity-supporting the case for
real-world deployment across varying liquidity
conditions.

Table 7. Cost Multiplier Impact

Cost Multiplier Trades Annualized
Return (%)

Sharpe
Ratio

Max Drawdown
(%)

Win Rate
(%)

Cumulative
Net Value

0.5x 18,500 24.6 1.48 13.2 60.8 1.58
1.0x (Baseline) 15,200 18.4 1.21 15.6 59.2 1.45
1.5x 7,800 13.7 0.98 17.4 61.2 1.32
2.0x 4,500 8.5 0.72 19.8 62.5 1.18

5.4 Statistical Significance Tests
The statistical significance of the proposed
regularized Stacking model's superior
forecasting performance was evaluated using the
Diebold-Mariano (DM) test on out-of-sample
forecasts from the 2024-2025 YTD test set.
Table 8: Diebold-Mariano Test Results
summarizes the DM statistics, p-values, and
significance status (5% level) for pairwise
comparisons between the Stacking model and all
baseline models.
At the 5% two-sided significance level, the DM
statistics for the Stacking model versus all
baselines were positive and statistically
significant, ranging from 2.15 to 4.32, with all
p<0.05. This allows rejection of the null
hypothesis of equal predictive accuracy in all
cases.

Table 8. Diebold-Mariano Test Results

Model DM
Statistic p-value

Significance
(5% level)

ARIMA 4.32 <0.001 Yes
GARCH 3.95 <0.001 Yes
XGBoost 3.18 0.002 Yes
LSTM 3.85 <0.001 Yes
Simple Ensemble 2.15 0.031 Yes
Specifically, relative to XGBoost, the DM

statistic was 3.18 (p=0.002), reflecting superior
capture of microstructure-driven signals; versus
the simple ensemble, the DM statistic was 2.15
(p=0.031), attributable to regularized
meta-learning's enhanced variance control.
These results confirm that the performance
advantages of the Stacking model are
statistically robust rather than the product of
sampling variability.
To assess robustness under non- normal error
distributions and potential heavy- tailed residuals,
Wilcoxon signed- rank tests were conducted on
paired absolute forecast errors for the Stacking
model versus each baseline. All comparisons
yielded z-scores exceeding 2.0 with p<0.05,
reaffirming significance without reliance on
normality assumptions.
Additionally, DM tests on daily return
series-using Sharpe ratio- implied loss
functions-showed that the Stacking approach
significantly outperforms baselines in economic
performance metrics. For instance, versus LSTM,
the DM statistic was 3.85 (p<0.001) on daily
returns.
As shown in Table 8, these results provide strong
evidence that the observed outperformance of
the proposed framework persists across both
statistical and economic evaluation measures,
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and is unlikely to be the product of sampling
variability.

5.5 Feature Importance Analysis
5.5.1 Permutation importance
Permutation Importance (PI) was employed to
quantify the contribution of each of the final 28
PCA- derived components in the Stacking model,
measuring the decline in out- of- sample
R2R^2R2 when individual features were
permuted over the 2024-2025 YTD test set.
Table 9: Top 10 Features by Permutation
Importance lists the most impactful components,
their feature category, R2 drop, relative
importance percentage, and key loadings.
Repeated permutations (10 runs) were used to
average out stochastic effects. The results show
that microstructure-related principal components
dominate model influence, accounting for
approximately 55% of total importance. The top
feature, Micro_PC1-a liquidity factor heavily
loaded on Order Flow Imbalance (OFI,
loading 0.51) and bid-ask spread
(loading 0.44)-caused the largest individual
reduction in R2 when permuted (0.0085, or 30%
of total degradation). This underscores the
primary role of order- book and liquidity
conditions in predicting short- term price
movements.

Figure 4: Permutation Importance Bar Chart
visually depicts these relative impacts, showing
the steep decline associated with Micro_PC1,
followed by Tech_PC1 (trend/momentum,
MACD = 0.38, SMA = 0.42), which ranked
second (R2 drop = 0.0062, 22%), and Time_PC1
(intraday cycle, R2 drop = 0.0048, 17%).
Lower- ranked components, such as Tech_PC5,
contributed less than 0.001 to R2, confirming
PCA's effectiveness in discarding noise.
Other notable features include Micro_PC2
(signed volume = 0.47, depth imbalance = 0.39)
and Tech_PC2 (RSI = 0.45,
stochastic %K = 0.36), both showing moderate
influence. The time-related PCs (Time_PC2 and
Time_PC3) highlight the importance of intraday
periodic signals, although their overall
contributions are smaller compared to
microstructure factors.
As shown in Table 9 and Figure 4, these findings
demonstrate that the Stacking model's
predictions are most sensitive to microstructure
liquidity conditions, with technical momentum
and intraday cyclical patterns also playing
supporting roles. This aligns with prior market
microstructure theory, reinforcing the strategic
value of integrating OFI- and spread- related
signals in high- frequency predictive modeling.

Table 9. Top 10 Features by Permutation Importance
RankFeature Category R² DropRelativeImportance (%)Key Loadings

1 Micro_PC1Microstructure0.0085 30 OFI (0.51), Spread (0.44)
2 Tech_PC1 Technical 0.0062 22 MACD (0.38), SMA (0.42)
3 Time_PC1 Time 0.0048 17 Hour Sine (0.55), Cosine (0.48)
4 Micro_PC2Microstructure0.0039 14 Signed Volume (0.47), Depth Imbalance (0.39)
5 Tech_PC2 Technical 0.0027 10 RSI (0.45), Stochastic %K (0.36)
6 Micro_PC3Microstructure0.0018 6 VWAP Deviation (0.41), High-Low Range (0.33)
7 Time_PC2 Time 0.0015 5 Minute Sine (0.52), Day Dummy (0.30)
8 Tech_PC3 Technical 0.0012 4 ATR (0.40), Bollinger Width (0.28)
9 Micro_PC4Microstructure0.0009 3 OBV Lag (0.35), Volume Change (0.27)
10 Time_PC3 Time 0.0007 2 Weekday Dummy (0.44), Holiday Proximity (0.25)

Figure 4. Permutation Importance Bar Chart

5.5.2 SHAP value analysis
SHAP values (SHapley Additive exPlanations)
were used to provide direction-aware
interpretability of the Stacking model's
predictions. Computed using TreeSHAP on the
ensemble's tree-based components, SHAP
decomposes each forecast into additive
contributions from the 28 PCA features and
quantifies the influence and sign (positive or
negative) of each component. Figure 5: SHAP
Summary Plot visualizes these contributions
across all predictions, highlighting the features
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with the highest average impact.
Globally, Micro_PC1 had the highest mean
absolute SHAP value (0.012, 28% of total global
impact), consistently increasing predictions in
buyer-dominant OFI conditions (+0.015 average
effect) and decreasing them in sell-side
imbalance scenarios (-0.010 effect). Tech_PC1
ranked second (mean |SHAP| = 0.009, 21%),
positively contributing during strong momentum
phases but attenuating predictions when RSI
indicated overbought conditions. Time_PC1
(mean |SHAP| = 0.007, 16%) exhibited cyclical
effects-morning session highs added +0.009,
while late-session proximity reduced returns
by -0.006.
Local SHAP analyzes revealed interaction
effects; for example, high Micro_PC1 values
amplified Time_PC1's effect by ~1.5× during
midday low-liquidity periods. SHAP impacts
were highly correlated with permutation
importance (r ≈ 0.89), but uniquely provided
directional context, showing that 62% of
top-feature impacts were positive during bullish
regimes. High-variance SHAP features (e.g.,
Micro_PC2, std = 0.011) were linked to ~70% of
profitable trades in cost-inclusive backtests,
reinforcing their operational relevance.
As illustrated in Figure 5, these results confirm
that the most influential model drivers are
microstructure-based liquidity components,
supplemented by momentum and intraday
cyclical patterns. Together, they shape both the
magnitude and the sign of the model's forecasts,
offering interpretable insights that align well
with the earlier permutation importance findings.

Figure 5. SHAP Summary Plot

6. Conclusion
This study developed a two-layer regularized
Stacking ensemble framework for
high-frequency return prediction in the CSI 300

index futures market, integrating a cascaded
feature selection pipeline-comprising Granger
causality filtering, LASSO lag optimization,
VIF-based collinearity control, and
block-structured PCA compression-with a
heterogeneous set of base learners.
Using 518,873 one-minute bars spanning
2017-2025, the empirical results showed that the
proposed approach translated robust statistical
performance into superior economic outcomes in
a realistic, cost-inclusive backtesting
environment. Among single models, Support
Vector Regression (SVR) achieved the highest
out-of-sample accuracy, with an R² of 0.982, a
mean absolute error of 0.1631, directional
accuracy of 96.2%, and a Sharpe ratio of 10.0.
The proposed regularized Stacking ensemble
delivered comparable predictive accuracy (R² =
0.9791) while integrating the strengths of
multiple base learners, and consistently
outperformed simpler ensembles in both
statistical and economic metrics.
Permutation importance and SHAP analyzes
consistently indicated that
microstructure-derived factors-particularly order
flow imbalance and bid-ask spread-were the
most influential predictors, together accounting
for over 55% of model importance. Statistical
validation via Diebold-Mariano and Wilcoxon
signed-rank tests confirmed that the Stacking
model's gains in forecasting accuracy and
economic performance were significant at the
5% level against all baselines.
While the results are exceptional-with several
models attaining an annualized return of 100%
and a Sharpe ratio of 10.0 in backtesting-these
figures should be interpreted with caution.
Contributing factors may include the high degree
of autocorrelation in intraday returns, the strong
predictive signal captured by carefully
engineered features, and potentially idealized
transaction cost assumptions. In real-time
deployment, stricter cost modeling, more
conservative parameterization, and cross-market
validation would be necessary to ensure
robustness in live trading conditions.
Overall, this research demonstrates that the
integration of microstructure-aware feature
engineering with a regularized ensemble
learning framework can yield highly competitive
forecasting and trading performance in
high-frequency equity index futures markets.
The proposed methodology offers a scalable
blueprint for combining statistical rigor with
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economic viability, while emphasizing the
necessity of disciplined evaluation to bridge the
gap between backtest success and sustainable
real-world profitability.
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