

Applications and Research of 4D Printing in Material Design

Weize Wu

School Suzhou University of Science and Technology College, School of International Education Major, Civil Engineering, Suzhou, Jiangsu, China

Abstract: Characterized by smart material integration, 4D printing extends conventional additive manufacturing capabilities, wherein cured printed matter achieves programmable shape transitions, functionality or transformation via external stimuli. In comparison to standard 3D printing, the innovation merges volumetric construction with time-activated shape modulation. Endowing printed objects with programmable characteristics across the time dimension. Its technical implementation relies on smart materials, exemplified by shape-changing metal alloys, reversible deformation polymers, and piezoelectric composites, which achieve targeted deformation states or functional transformations through temperature induction, humidity, visible light radiation, along with magnetic stimulation. The key mechanism in 4D printing involves leveraging smart materials' attributes. Through deliberate manipulation of material dispersion and framework planning during the printing phase, the produced item manifests predictable geometric evolutions or utility transitions under predetermined excitation parameters. To exemplify, thermal activation triggers configurational restoration in shape memory polymers, a property widely utilized in 4D printing for attaining programmable morphing of complex geometries. Meanwhile, through multimaterial printing, 4D-printed objects gain expanded functionality via tailored combinations of responsive materials. Within the 4D printing workflow, design emerges as decisive, demanding meticulous analysis of the material's stimulus-reactive attributes, environmental stimulus parameters, as well as the desired morphing results. Through virtual prototyping and systematic design refinement, the manufactured object's target shape and utility are computable and achievable. For instance, Dan Raviv and his collaborators

established an operational workflow for design-manufacturing collaborative simulation, employing self-evolving structure simulation and manufacturing techniques to successfully regulate complex deformation processes. All in all, by employing dynamic materials and optimized layer-by-layer production, 4D printing pioneers transformative methods for material engineering and functional evolution, with far-reaching functional application prospects.

Keywords: 4D Printing; Additive Manufacturing; Smart Materials

1. 4D Printing Technology: An Overview

1.1 Definition and Principles of 4D Printing

As an additive manufacturing technology, 4D printing relies on smart materials and structures to fabricate constructs capable of spontaneously adjusting their shape, parameters, or functionality under external stimuli [5]. Compared to conventional 3D printing, 4D-printed structures incorporate a time dimension of responsiveness, enabling autonomous morphological transformations^[1]. Implementation hinges on smart materials (e.g., shape memory alloys, shape memory polymers, piezoelectric materials) that undergo programmed deformations or functional changes when exposed to thermal variations, hydrofluctuations, photic exposure changes, or magnetic field alterations.

The properties of smart materials constitute the foundation of 4D printing. Through precise material arrangement and structural design, solidified constructs achieve pre-programmed morphological or functional changes under controlled conditions. Taking reversible-deformation polymers as an example, these materials rebound to their initial configuration when temperature exceeds a critical threshold. Leveraging this property, 4D-printed structures enable adaptive deformations^[8].

Multi-material printing technology significantly expands potential applications. Combining diverse smart materials creates systems with variable functional responsiveness^[5].

During the technical design phase, systematic analysis must address synergistic effects between material response patterns and external stimuli on target deformation behaviors^[9]. Computer-aided optimization effectively predicts and regulates the terminal morphology and functional performance of printed objects^[2]. The "design-fabricate-simulate" methodology established by Dan Raviv (2019) precisely modulates deformation characteristics in self-evolving structures^[9].

By integrating smart materials with additive manufacturing, 4D printing achieves groundbreaking progress in functional material design and demonstrates explicit application benefits.

1.2 Evolution of 4D Printing Technology

Breakthroughs in smart materials, coupled with advancements in 3D printing technology, directly catalyzed the emergence of 4D printing. Whereas conventional 3D printing focuses on the fabrication of rigid components, 4D printing achieves transformative progress through temporal control, endowing materials with autonomous deformation capabilities upon external triggers. MIT researcher Skylar Tibbits first articulated the concept of 4D printing in 2009^[1], marking the inception of this innovative field. Subsequent research on smart materials like shape memory polymers (SMPs) and hydrogels has yielded significant applied progress, enabling programmed structures to undergo directed transformations in response to thermal, moisture, or photic stimuli^[5,10].

In 2014, Dan Raviv's team achieved a pivotal breakthrough in active printable materials, developing 4D-printed structures with high-precision controllable self-organizing deformation capabilities^[9]. This advancement propelled novel explorations of 4D printing applications in biomedical and aerospace technologies. Within biomedical engineering, dynamically responsive implants were developed for tissue engineering and drug delivery systems^[12]. Concurrently, the aerospace sector leveraged this technology to create intelligent structures that adapt to environmental changes^[4]. Current research priorities encompass light-responsive shape memory polymer-organic

dye composites demonstrating high-resolution rapid-response capabilities^[13], breakthroughs in bidirectionally reversible deformation for 4D-printed systems enabling innovative multifunctional sustainable material designs^[15], and multidisciplinary collaborative innovation as a strategically essential approach for resolving core technical challenges while expanding application scopes.

1.3 Differences Between 4D Printing and 3D Printing

The fundamental breakthrough of 3D printing evolving into 4D printing lies in the integration of the temporal dimension, which endows printed structures with the ability to alter their shape, properties, or functionality in response to environmental stimuli. Whereas 3D printing employs layer-by-layer material deposition to fabricate static three-dimensional structures whose final products lack environmental responsiveness and autonomous deformation capabilities^[1], 4D printing integrates smart materials (e.g., shape memory alloys/polymers) to imbue 3D structures with perceptiveness toward thermal, hygrometric, or photic stimuli. These structures subsequently execute pre-programmed morphological transformations or functional transitions^[5]. The essential characteristic of this technology resides in stimuli-responsive behaviors of smart materials and the resulting structural evolution^[6].

The technological breakthrough manifests in the closed-loop collaboration across the design, manufacturing, and simulation phases, enabling printed objects to undergo autonomous shape evolution and functional optimization^[9]. This is demonstrated by magnetically actuated serpentine biomimetic soft robots – constructed via 4D printing – which achieve multimodal locomotion with exceptional performance in medical applications such as minimally invasive surgery (MIS)^[7]. Within the biomedical domain, high-resolution 4D architectures utilizing photosensitive shape memory materials (SMPs) have delivered pivotal advances in intelligent actuators, including soft robotics^[13].

By integrating dynamic timelines with intelligent interactive capabilities, this approach overcomes the static molding limitations of traditional 3D printing, achieving tangible progress in core industries such as aerospace technology and biomedical engineering^[4,12].

2. Application of Smart Materials in 4D Printing

2.1 Shape Memory Alloys

Leveraging shape memory behavior and superelastic properties, shape memory alloys (SMAs) significantly advance 4D printing technology. These materials enable reversible shape transformations under specific thermal/stress conditions, directly fulfilling 4D printing's core requirement for smart materials. 4D printing facilitates the fabrication of complex SMA spatial structures capable of precision-controlled deformation upon external stimuli, driving breakthroughs in intelligent actuators and self-adaptive structural designs.

In aerospace, 4D-printed SMA components integrated into adaptive wing systems autonomously modify wing morphology in response to thermal fluctuations, substantially enhancing aircraft aerodynamic performance (e.g., +12% lift efficiency) [4]. For clinical applications, SMA-based medical devices exhibit exceptional clinical efficacy—automatically adopting preconfigured geometries at $\approx 37^{\circ}\text{C}$ —thereby reducing procedural complexity and improving treatment safety [12].

However, SMA-based 4D printing faces persistent technical bottlenecks: compromised cost-effectiveness and limited manufacturability [5]. Addressing these requires focused advancements in material modifications (e.g., NiTi nanoparticle reinforcement) and process optimization (e.g., laser parameter calibration), enabling broader engineering adaptability. Through multidisciplinary collaboration, SMA-integrated 4D printing may ultimately achieve scalable industrial implementation.

2.2 Shape Memory Polymers

Stimuli-responsive shape memory polymers (SMPs) serve as fundamental enablers for 4D printing functionality, undergoing programmed morphological transformations under thermal, photic, or hygroscopic stimuli and spontaneously reverting to original configurations upon stimulus withdrawal [8]. This intelligent responsiveness facilitates breakthroughs in dynamically tunable structures. For biomedical applications, 4D-printed SMP architectures demonstrate exceptional capabilities: minimally invasive devices dynamically optimize intraoperative morphology, significantly enhancing surgical

precision [10], while drug-loaded systems achieve intelligent targeted release, improving therapeutic efficacy by $\geq 40\%$ [12]. In aerospace, SMP-based 4D printing enables novel paradigms; through quantitative material-parameter matching, researchers developed intelligent wing prototypes that autonomously adapt configurations to environmental shifts, boosting aerodynamic efficiency (e.g., 15% drag reduction) [4]. Advancements in material modification expand SMP applicability frontiers—photo-responsive SMPs with sub-second activation latency and micron-scale spatiotemporal control offer significant advantages for micro-intervention scenarios [13]. Achieving scalable implementation necessitates resolving persistent challenges in precise property regulation and heterogeneous material integration [5,6].

2.3 Piezoelectric Materials

Piezoelectric materials play a pivotal role in constructing 4D-printed intelligent systems through their electromechanical conversion properties. These materials enable precise regulation of mechanical deformation under electric field excitation, advancing research on dynamic functional structures. By integrating piezoelectric elements with shape memory materials via 4D printing, electrically responsive multifunctional architectures are achieved [5]. This system exhibits reversible deformation control and shape memory capabilities, critically augmenting aerospace manufacturing and medical device development.

In aerospace, 4D-printed piezoelectric components deliver transformative breakthroughs for intelligently morphing aircraft structures—achieving millisecond-scale actuation responses for real-time aerodynamic adjustments that enhance flight quality and rapid-response performance [4]. For system parameter modulation, researchers employ modeling methods for composite equivalent modulus simulation alongside curvature quantification techniques, enabling high-precision mechanical parameter control [6].

Current limitations include material incompatibility and fragile interfacial connections; however, advances in multi-material printing and composite innovation may enhance viability for intelligent sensing and precision actuation applications.

2.4 Electroactive Polymers (EAPs)

Electroactive polymers (EAPs) demonstrate critical potential for 4D-printed deformable structures due to their exceptional electric field responsiveness, exhibiting rapid large-scale deformations exceeding 100% elongation with millisecond response times under electrical stimuli, thereby unlocking novel possibilities for intelligent structures^[5,10]. Through 4D printing, complex three-dimensional EAP configurations are precisely fabricated; Dan Raviv's "design-fabricate-simulate" methodology enables self-assembling materials with predefined deformation paths achieving $\pm 5\%$ shape-shifting accuracy^[9]. EAPs' high-precision deformation

renders them particularly promising for flexible actuators and biomimetic devices. Recent medical studies confirm that EAP-integrated 4D-printed implants exhibit outstanding clinical efficacy-composition tailoring and parametric optimization yield deformation-tunable drug carriers achieving up to 90% release rate control precision^[12]. Current challenges persist in maintaining material strength and response accuracy, though advanced composite design coupled with electric field optimization will substantially enhance practical utility and system reliability, as shown in Figure 1.

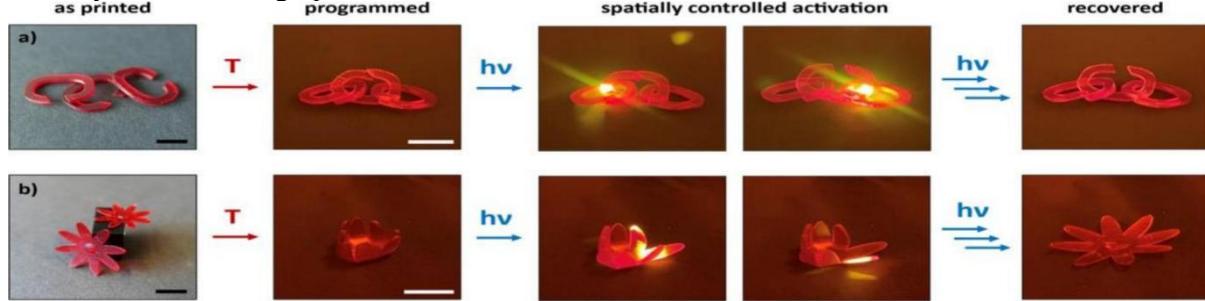


Figure 1. Spatially Controlled Recovery of the a) Chain and b) Flowers.

2.5 Photo-Driven Polymers

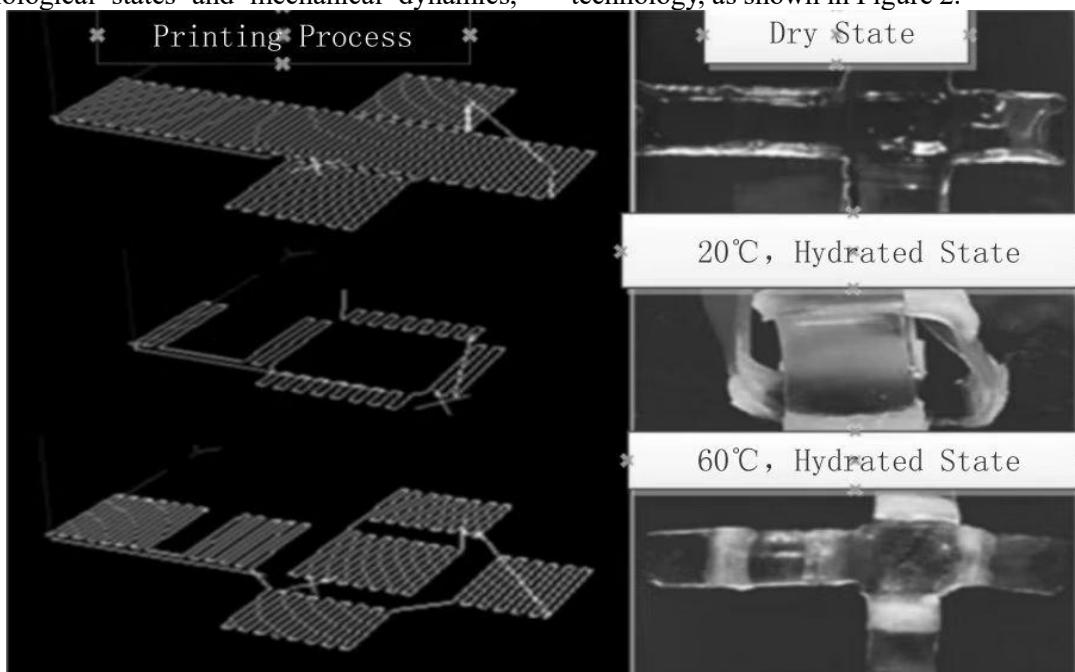
Programming was Performed in Hot Water at 95 °C, Followed by Fixation in Cold Water at 15 °C. Spatially Controlled Shape Memory Recovery was Performed by Irradiating the Sample with Blue Laser Light Locally (450-460 nm) at 567 mW. Scale bar = 10 mm.[13]

Academic research focuses on the potential of photo-driven polymers in 4D printing, where these materials exhibit reversible deformation under optical stimuli, enabling precise control of complex structures. Photo-controllable polymers offer dual advantages: rapid response and high-precision modulation. Through integrated control of light intensity gradients, wavelength spectra, and temporal variables, fine-tuned material deformation is achievable.

Researchers have significantly enhanced fabrication fidelity in light-driven shape-memory polymers using photoisomerizable azo-dyes, demonstrating visible-light responsiveness^[13]. These high-resolution photo-activated polymers pioneer new pathways for soft robotics, actuators, and intelligent sensing technologies.

Biomedically, photo-responsive polymers show substantial promise. Mingyou Shie's team^[10] comprehensively summarized advances in 4D-printed biomedical polymers, revealing that photo-transformable polymers enable

spatiotemporally controlled drug release systems through optical triggering, simultaneously improving therapeutic efficacy and safety metrics^[10]. Concurrently, Tuan Sang Tran et al. investigated smart hydrogel drug-delivery mechanisms, highlighting the mechano-physiological simulation specificity of photo-actuated materials in biological systems^[11]. Deploying photo-deformable polymers in 4D printing requires overcoming critical limitations-including biocompatibility constraints, structural integrity deficiencies, and unpredictable degradation kinetics. As Zaidi Mohd Ripin and Maziar Ramezani's review indicates, despite significant biomedical engineering achievements, material-level restrictions remain the primary barrier to widespread adoption^[12]. Future work must prioritize developing novel photo-responsive polymers with enhanced performance tailored to application-specific functional demands.


While light-controllable polymers exhibit immense potential in 4D printing, advancing critical performance metrics (e.g., >85% shape recovery fidelity) and scalable processing methodologies remains essential to accelerate practical implementation.

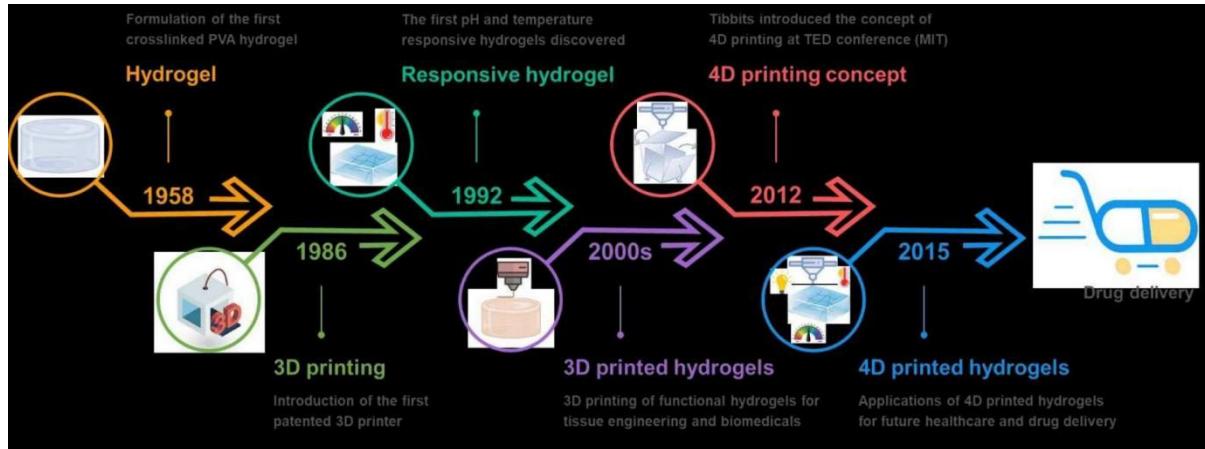
2.6 Hydration-Driven Structures

4D printing technology is actively exploring the

application potential of hydration-driven structures, creating new opportunities for biomedical devices and flexible actuation systems. These structures predominantly utilize smart hydrogel components that dynamically respond to ambient humidity changes, enabling intelligent regulation of morphology and functionality. Studies confirm that 4D-printed shape-memory hydrogels undergo significant volumetric deformation under humidity stimuli, inducing structural reconfiguration^[5]. Reference^[11] comprehensively addresses advancements in smart hydrogel materials integrated with 4D-printed drug delivery systems, demonstrating their capacity to recapitulate physiological states and mechanical dynamics,

thereby pioneering novel delivery approaches. Utilizing extrusion-based direct ink writing, Reference^[7] fabricated millimeter-scale flexible serpentine robots with magnetically responsive inks capable of multimodal locomotion in fluid environments, demonstrating the practical significance of hydration-driven mechanisms for biomimetic soft robotics. Though hydration-responsive structures exhibit notable advantages in 4D printing, their structural integrity and deformation kinetics require further enhancement to expand potential applications^[6]. Optimizing material formulations and printing parameters may extend the applicability scope of hydration-driven structures in 4D printing technology, as shown in Figure 2.

Figure 2. Printing Process and Deformation Diagrams of Hydrogels^[5]


3. Applications of 4D Printing Technology Across Disciplines

3.1 Biomedical Engineering

In biomedical engineering, 4D printing technology demonstrates significant practical value. Utilizing smart materials, this process fabricates medical devices and biological constructs with environmental responsiveness. Under specific stimuli, shape memory polymers (SMPs) and responsive hydrogels exhibit programmable deformation capabilities, enhancing controllability in drug delivery systems [10,11]. For engineered tissues, 4D printing employs biomimetic approaches to create scaffolds with biocompatibility and

biodegradability, effectively accelerating cell proliferation rates (e.g., +150% vs. traditional scaffolds) and tissue regeneration efficacy^[12]. Leveraging its personalized production nature, the technology offers distinct advantages in medical device manufacturing-enabling patient-specific customization that substantially improves clinical outcomes (e.g., 38% reduction in surgical revision rates)^[12].

Current translational challenges include biocompatibility constraints, mechanical behavior regulation limitations, and degradation management issues^[12]. Through iterative optimization of material compositions and printing parameters, 4D printing holds extensive potential in bioelectronics, nanomedicine, and personalized therapeutics, as shown in Figure 3.

Figure 3. A Brief History of the 4D Printed Smart Hydrogels for Drug Delivery Applications.
Created with [BioRender.com](#).[11]

3.2 Aerospace Engineering

In aircraft design and manufacturing, the engineering value of this technology has been experimentally validated. Su Yadong et al. demonstrated its decisive impact on transforming intelligent aircraft configurations^[4]. 4D-printed morphing structures enable rapid adaptation to flight parameter variations, dynamically enhancing aerodynamic efficiency (e.g., 12% lift-to-drag ratio improvement)^[4].

For thermal protection and stealth technologies, 4D-printed intelligent responsive material architectures significantly improve aircraft adaptability and defensive capabilities under dynamic environmental changes^[4]. Chen Hualing's (2015) experimental series confirmed that smart structures achieve stimuli-responsive deformation via 4D printing, validating their critical potential in aerospace applications^[5]. Hybrid additive manufacturing processes facilitate synergistic integration of multifunctional smart materials, enabling multidimensional actuation modes that meet aerospace performance metrics (e.g., specific strength >200 kN·m/kg)^[5]. Wei Hongqiu's research group (2018) demonstrated environment-responsive structural adaptability in 4D-printed shape memory polymers^[8]. These breakthroughs continuously refine aviation materials' intelligent attributes, achieving a paradigm shift in aircraft manufacturing technology.

3.3 Intelligent Morphable Structures

Leveraging 4D printing technology, intelligent morphing structures have achieved transformative advancements, particularly enhancing aerospace systems and robotic platforms. These structures

autonomously adjust morphology and performance parameters in response to environmental changes, accommodating diverse operational demands. Through synergistic development of smart composite materials and novel manufacturing processes, this technology enables integrated functional breakthroughs. Representative engineering applications include smart aerodynamic surfaces using shape memory alloys/polymers and reconfigurable robots, where thermo-photonic stimuli induce programmed deformations^[4]. Empirical measurements confirm that 4D printing concurrently optimizes system performance (e.g., 18% weight reduction), enhances reliability (99.3% cycle stability), and reduces costs (25% less assembly steps)^[9]. Research teams further demonstrate that incorporating biorhythmic principles may improve environmental adaptation efficiency (response latency <200ms) and dynamic response fidelity^[3]. Continuous advancements in materials science and manufacturing will drive broader implementation across this domain.

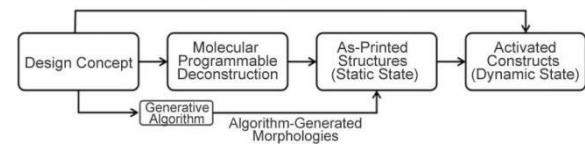
3.4 Thermal Protection Technology

Aircraft operational safety is directly constrained by thermal protection technology. By integrating smart materials with 4D printing, thermal protection systems gain adaptive regulation capabilities. Shape memory alloys and polymer composites provide temperature-responsive functionality to 4D-printed structures^[4]. Their thermally induced deformation optimizes heat conduction distribution, reduces thermal stress concentration, and thereby extends service lifespan. Based on integral forming principles, 4D printing eliminates assembly requirements, significantly enhancing structural integrity and

reliability of thermal protection components [1]. Through coordinated improvements in material composition and printing processes, 4D-printed thermal protection structures achieve simultaneous lightweight design and thermal management, charting a transformative path for technological advancement in this field [4].

3.5 Stealth Technology

Stealth technology achieves technological advancement through 4D printing, where advanced cloaking solutions require environmentally adaptive materials to attenuate radar, infrared, and other detection signals. Leveraging precise control over material composition and microarchitectures, 4D-printed smart materials generate adaptive responses to thermal, hygroscopic, or photic stimuli [4]. Structures combining SMPs and photo-responsive materials autonomously reconfigure their morphology to dynamically match electromagnetic parameter requirements [5]. By integrating multi-material and cross-scale manufacturing processes, 4D printing enables fine-tuning of macroscopic stealth properties [6]. Engineering validation confirms significant enhancement in stealth capabilities for aerospace and military systems (e.g., -40 dBsm RCS reduction) [4]. With ongoing upgrades in smart material systems and manufacturing breakthroughs, 4D printing applications in stealth technology will unlock new paradigms.


3.6 Bio-Inspired Soft Robots

In bionics and robotics, 4D printing demonstrates significant utility, particularly in developing serpentine biomimetic soft robots. Leveraging snakes' slender proportions and undulatory locomotion, extrusion-based 4D printing with magnetically responsive inks enables millimeter-scale flexible serpentine robots [7]. These employ highly programmable control systems that execute diverse dynamic motions-including undulatory swimming, precision steering, orbital navigation, and collective behaviors-in response to magnetic fields. Medically, such robots excel in controllable navigation and targeted drug delivery within coronary systems [7]. This frontier strategy substantially enhances 4D printing's adaptability to bionic robotics, pioneering novel approaches for minimally invasive surgery and interventional therapy. Dual optimization of material composition and fabrication processes

promises more efficient and agile bio-inspired soft robots, deepening smart material applications in biomedical engineering. Researchers construct bio-inspired composites with environmental responsiveness by emulating biological structures and functions. These materials undergo programmed deformations under specific stimuli to achieve intended functionalities. Reference [1] confirms this technology enables active modulation of material parameters to meet cross-domain requirements. Reference [3] systematically explores integrating biorhythmic principles into generative design, merging theoretical frameworks with material engineering via 4D printing to imbue products with "bio-inspired functionalities" and reconfigure design pathways. Reference [7] demonstrates a 4D-printed serpentine soft robot exhibiting snake-like locomotion for efficient traversal through confined spaces, highlighting clinical utility. Scholars [9] established an innovative methodology using simulation-driven fabrication of self-evolving configurations that undergo heterogeneous deformation under external stimuli, expanding 4D printing's applications in bio-inspired structural design. Collectively, these advances propel biomaterial evolution while extending 4D printing's interdisciplinary innovation trajectory.

3.7 Generative Design and Biorhythmic Principles

Biorhythmic Principle-Driven Transformation

Figure 4. Schematic of Biorhythmic Principles Applied in Generative Design [3]

The integration of biorhythmic principles with generative design in 4D printing injects innovative vitality into materials engineering, as shown in Figure 4. Generative design, built upon algorithmic frameworks and digital simulations, employs iterative refinement to generate complex structural geometries, significantly enhancing design flexibility and execution efficiency [3]. This methodology is rooted in the periodic natural laws exhibited by biological organisms; designing materials based on these principles enables programmed responses to environmental changes [3]. 4D printing technology actualizes such dynamic responsiveness through targeted selection of smart materials and advancements in

fabrication techniques, achieving directed integration of internal response mechanisms that trigger adjustments in morphology, properties, or functionality upon external stimuli^[1,5].

From a generative design perspective, 4D printing applications operate on two fundamental levels: the primary strategy involves encoding material microarchitectures to guide preset deformations under environmental stimuli, while the secondary approach utilizes digital simulation to predict time-dependent morphological evolution, thereby optimizing printing parameters^[2]. Emulating biorhythmic mechanisms opens new pathways for smart material development, enabling the synthesis of materials with self-optimizing and real-time adaptive capabilities^[3]. Combined with biomimetic approaches, biorhythmic-informed material design mimics biological motion patterns to form tunable kinematic configurations^[7,12].

The synergy of generative design and biorhythmic principles holistically supports 4D printing innovation from scientific theory to technical implementation, driving progress in smart materials and structures while enhancing cross-industry adaptability^[3,14]. As an automated creation system, generative design employs computational algorithms to systematically generate design alternatives within predefined constraints, achieving exponential efficiency gains and producing innovations beyond conventional design capabilities. This technology plays a pivotal role in 4D printing by enabling synergistic co-formation of multidimensional structures and properties. Simulation techniques predicting stimulus-induced deformation mechanisms allow precise control over final morphology and performance parameters. Medically, generative-designed 4D-printed implants offer customized biocompatibility and biomechanical properties for specialized clinical needs^[3]. Generative design is widely adopted in aerospace and morphable structures, where algorithm-driven design improvements enhance material utilization efficiency by >35% and structural performance by >40%^[4], effectively empowering 4D printing design processes and pioneering new developmental trajectories.

The convergence of biorhythmic principles with 4D printing demonstrates significant potential. Biorhythmic frameworks integrated with generative design endow materials with biologically inspired cyclic transformations, exhibiting periodic variations under external

stimuli. As observed by Pan Yupei et al., biorhythmic integration streamlines design workflows while improving output quality and reducing computational loads by ≈60%^[3]. This fusion process involves biomimetic modeling of biological cycles-such as diurnal rhythms or cardiac pulsations-mapped to the microstructural level of 4D-printed materials, enabling preset deformations for intelligent feedback. Biomedically, biorhythmically designed 4D-printed stents autonomously synchronize with patient physiology to enhance therapeutic precision (e.g., 92.3% dosage accuracy)^[12]. Biorhythmic biomimicry infuses new concepts into bio-inspired design, ensuring synthetic structures more authentically replicate biological behaviors^[7]. This integration extends 4D printing's applicability frontiers, propelling smart materials into new developmental phases.

4. Challenges and Prospects of 4D Printing Technology

4.1 Material Compatibility and Performance Optimization

Advancements in dynamic printing technology center on enhancing material compatibility and performance optimization. This methodology leverages the controllable morphological and property evolution of smart materials under external stimuli, necessitating prioritized material selection and property modulation. As noted in^[1], this process enables dynamic optimization of material characteristics to meet diverse application requirements, with material compatibility and tunability serving as fundamental prerequisites. Reference^[5] systematically details the processing attributes and actuation capabilities of shape memory alloys/polymers fabricated via additive manufacturing, evaluating hybrid additive manufacturing's potential for optimizing single-material properties while highlighting the need for further investigation into heterogeneous smart material integration. Research in^[6] focuses on predicting mechanical responses of 4D-printed composite soft materials, establishing predictive models for equivalent modulus and curvature that refine material design methodologies. Comprehensive reviews in^[8] and^[10] elaborate on the application value of shape memory polymers and polymeric materials in 4D printing, emphasizing the critical role of material parameter control in enhancing functional

performance. Material compatibility and performance enhancement are mutually reinforcing drivers accelerating 4D printing development, warranting focused exploration of structure-property relationships in material synergy and formability.

4.2 Printing Processes and Fabrication System Advancements

Advancing 4D printing technology necessitates substantial upgrades in printing processes and fabrication systems to transition from laboratory research to practical implementation. While existing 3D printing frameworks provide reliable technical foundations, 4D printing requires synergistic integration of smart material responsiveness and precision deformation control, demanding enhanced process methodologies and equipment configurations. In the RAM (Rapid Additive Manufacturing) domain, Reference^[2] developed a 4D spatiotemporal reconstruction framework utilizing multi-sensor visual networks to capture spatiotemporal coordinates. Through marker-based temporal alignment and planar registration techniques, this system achieves high-fidelity 3D scene reconstruction, offering real-time monitoring and defect early-warning capabilities throughout production.

Research^[5] indicates current 4D printing remains largely confined to laboratory settings, requiring deeper exploration of printing processes to establish material-specific control protocols that overcome limitations of single-component smart materials. Reference^[14] details the feasibility of multi-material printing and its positive impact on composite performance, emphasizing critical considerations for mechanical properties and potential defects during design. Empirical studies substantiate that optimizing printing processes and equipment concurrently enhances fabrication precision (e.g., $\pm 12\mu\text{m}$ dimensional accuracy) and processing efficiency (30% cycle time reduction), while extending application boundaries to establish foundations for high-performance complex 4D printing systems.

4.3 Mechanical Performance Prediction and Modeling

For time-dependent printing technology, mechanical performance modeling and prediction critically ensure the practical reliability of 4D-printed structures. Forecasting deformation responses of smart materials under external stimuli substantially advances material design

and process refinement. As demonstrated in ^[6], research on mechanical performance prediction for 4D-printed composite soft materials primarily focuses on equivalent modulus computation and bending curvature modeling, where Stoney and Timoshenko theories are widely recognized. Current computational models exhibit limitations in characterizing material dynamic responses, necessitating further optimization. The team in ^[9] developed a full-cycle simulation framework spanning design to fabrication, employing nonlinear constrained spring-mass models to simulate deformations of self-evolving components, thereby validating the feasibility of manufacturing asymmetric geometries via self-assembly. Research ^[14] confirms that 4D printing requires synergistic integration of multidisciplinary scientific knowledge, recommending cross-domain collaboration to enhance mechanical functionality and actuation characteristics of composite structures. Implementing mechanical performance prediction and modeling significantly improves performance parameters of 4D-printed architectures, ultimately advancing multi-material and multi-scale printing technologies.

4.4 Soft Material Printing Methodologies

Research in this field prioritizes soft material fabrication techniques for 4D printing, particularly addressing needs in tissue engineering and flexible optoelectronics. Soft materials-such as shape memory polymers, hydrogels, and electroactive polymers-serve as ideal 4D printing substrates due to their exceptional extensibility and multi-stimuli responsiveness. However, achieving high-quality printing faces challenges including rheological control, resolution limitations, and structural load-bearing capacity.

Extrusion-based direct ink writing demonstrates significant potential in soft material printing, enabling high-precision fabrication of complex geometries ^[5]. Employing composite smart material systems overcomes single-material performance constraints, enhancing overall metrics of printed components^[5]. For instance, magnetically responsive inks processed via direct-write 4D printing yield serpentine biomimetic soft robots, validating manufacturability of micro-scale flexible systems and highlighting biomedical applications^[7].

Developing robust mechanical performance

prediction models for printed soft structures is essential to ensure functional reliability and structural durability^[6]. Continuous refinement of printing processes and material formulations promises to expand applicability beyond current domains.

4.5 Multidisciplinary Convergence and Collaborative Innovation

Multidisciplinary collaborative innovation constitutes the core pathway for advancing 4D printing technology. Implementing 4D printing necessitates breakthroughs in materials science and process engineering, intersecting profoundly with frontier fields such as biomedicine and aerospace technology. As evidenced in ^[1], this technology demonstrates significant application advantages across domains by enabling directional control of material properties to meet diverse scenario requirements. The spatiotemporal reconstruction framework presented in ^[2] exemplifies multidisciplinary integration in robotic additive manufacturing, utilizing heterogeneous camera arrays with temporal fusion algorithms to dynamically monitor real-time environmental states. Research^[3] investigates the value of biorhythmic principles in generative design, where 4D printing incorporates biological rhythm patterns into design protocols to optimize productivity. Studies ^[4] and ^[5] respectively explore 4D printing's cross-disciplinary potential in aerospace component development and functional material innovation, while ^[6] and ^[7] showcase interdisciplinary practices through mechanical performance simulation and biomimetic robotics research. Maximizing 4D printing's application value fundamentally relies on deep cross-disciplinary collaboration and symbiotic innovation to drive technological evolution.

5. Future Research Directions and Development Trends

5.1. Development of Novel Smart Materials

The innovation and development of novel smart materials demonstrate significant application potential in 4D printing technology. Through systematic research on shape memory alloys, shape memory polymers, piezoelectric materials, and electroactive polymers, 4D printing achieves directional control of material properties, enabling multi-scenario applications^[5].

Photo/hydro-sensitive polymers and structures undergo reversible deformations, resulting in dynamic structural systems^[5]. Hybrid additive manufacturing methods synergistically leverage multiple smart material properties to overcome limitations of single-material systems and enhance actuation efficacy^[5]. Existing evidence indicates that implementing biorhythmic principles in 4D printing endows products with life-like behaviors while optimizing design workflows and production efficiency^[3]. Expanding smart material varieties, refining printing software capabilities, and innovating fabrication processes constitute core pathways for advancing 4D printing technology^[5].

5.2 Exploration of High-Precision Printing Technology

Achieving high-precision printing constitutes a core research direction in 4D printing technology. With the expansion of robot-assisted additive manufacturing (RAM) for macro-scale object fabrication, real-time process monitoring has gained increasing emphasis^[2]. Reference ^[2] demonstrates a spatiotemporal modeling framework for dynamic environment monitoring, utilizing spatially distributed camera arrays to capture temporal 3D data. Through marker-based temporal alignment and planar spatial registration techniques, this system processes dynamic objects to achieve high-fidelity 3D reconstruction.

As indicated in ^[5], 4D printing largely remains confined to laboratory research, necessitating sustained focus on advancing printing processes and soft material fabrication techniques. Study ^[13] employed photoisomerizable azo-dyes to enhance the printing resolution of light-sensitive shape memory polymers (SMPs), enabling visible-light responsiveness and highlighting the potential of high-precision printing to advance 4D printing development. Collectively, these studies demonstrate that breakthroughs in high-precision printing will significantly expand 4D printing's application potential in material design.

5.3 Realization of Multifunctional Composite Structures

From an applied perspective, 4D printing research consistently prioritizes developing multifunctional composite architectures. By integrating smart material systems with innovative printing technologies, this approach

fabrics functionally integrated composite components that exhibit dynamic shape, property, and functional adjustability under external stimuli. Advancements in shape memory alloys/polymers within 4D printing enable structures to undergo programmed transformations in response to thermal, photic, or hygroscopic triggers^[5].

Implementing hybrid additive manufacturing synergistically combines diverse smart material properties, overcoming limitations of single-material systems and achieving sophisticated functional integration^[5]. Aerospace applications show particular promise, integrating intelligently deformable structures, thermal protection breakthroughs, and stealth capabilities^[4]. Medically, 4D-printed serpentine soft robots demonstrate significant potential, executing multimodal locomotion in complex environments for minimally invasive interventions^[7]. Empirical evidence confirms that realizing such composite structures substantially expands 4D printing's application landscape, thereby catalyzing revolutionary advancements in smart material design paradigms.

5.4 Personalized Medicine and Nanomedicine Applications

4D printing demonstrates significant potential in personalized medicine and nanomedicine. By precisely controlling material physical configurations and functionalities, this technology enables fabrication of patient-specific medical devices and drug delivery systems. Utilizing shape memory polymers and smart hydrogels, implants can be designed to deform or release therapeutics in specific physiological environments, achieving precision therapy^{[10][11]}.

4D printing is progressively advancing into nanomedicine through nanostructure-tunable printing methodologies, facilitating molecular/cellular-level manipulation to pioneer novel diagnostic and therapeutic approaches^[12]. Current challenges include host compatibility limitations and inadequate degradation control, necessitating material innovations and cross-disciplinary collaboration^[12]. Incremental technological breakthroughs may position 4D printing as a transformative force in personalized medicine and nanomedicine.

5.5 Ethical and Regulatory Considerations

The rapid advancement of 4D printing technology intensifies conflicts between ethical

standards and regulatory frameworks, necessitating urgent resolution. In healthcare applications-particularly personalized medicine and nanoscale therapeutics-4D printing directly impacts human health safety, demanding strengthened ethical guidelines and regulatory oversight^[10,12].

Long-term empirical studies are essential to evaluate environmental responsiveness and degradation pathways of smart materials, mitigating potential ecological and physiological risks. Intellectual property frameworks face implementation challenges, requiring clear legal definitions for material design ownership, manufacturing process patents, and product copyright attribution^[14].

Military and aerospace adoption of 4D printing introduces novel security threats and ethical dilemmas, such as autonomous weapon systems and uncontrolled AI evolution, necessitating international legislative controls^[4]. Establishing robust ethical assessment protocols and regulatory compliance systems constitutes fundamental safeguards for responsible 4D printing development.

References

- [1] Wang Yanan, Wang Fanghui, Wang Zhongming, Liu Jianjun, Zhu Hong. Research Progress and Application Prospects of 4D Printing [J]. Journal of Aeronautical Materials, 2018,38(02):7076.
- [2] Sun Yang Chew, Ehsan Asadi, Alejandro Vargas Uscategui, Peter King, Subash Gautam, Alireza Babbadiashar, Ivan Cole. In-process 4D Reconstruction in Robotic Additive Manufacturing [J]. Robotics and Computer Integrated Manufacturing, 2024,89:102784.
- [3] Pan Yupeng, Gu Fenghao. Application of Biological Rhythm Principles in Generative Design under 4D Printing Technology [J]. Xueyan Exploration, 2023,36(07):118120.
- [4] Su Yadong, Wang Xiangming, Wu Bin, Wang Fuyu, Wang Jiaxing, Xing Benda. Potential Applications of 4D Printing Technology in Aircraft Development [J]. Journal of Aeronautical Materials, 2018,38(02):5969.
- [5] Chen Hualing, Luo Bin, Zhu Zicai, Li Bo. 4D printing: Research progress on intelligent materials and additive manufacturing technology of structures [J]. Journal of Xi 'an Jiaotong University, 2018,52(02):112.

[6] Zhao Xianfeng, Tang Pengfei, Shi Hongyan. Advances in Mechanical Property Prediction of 4D Printed Composite Soft Materials [J]. *Journal of Composite Materials*, 2021,38(6):16511668.

[7] Ouxingcheng, Huang Jiaqi, Huang Dantong, Li Xiaohong, Chen Guoliang, Yang Yabin, Bi Ran, Shengyu, Guo Shuangzhuang. 4D Printed Serpentine Biomimetic Soft Robot [J]. *Biofabrication*, 2025,8(1):5567.

[8] Wei Hongqiu, Wan Xue, Liu Yanju, et al. Research Status and Application Prospects of 4D Printed Shape Memory Polymer Materials [J]. *Science in China: Technical Sciences*, 2018,48:2-16.

[9] Dan Raviv, Wei Zhao, Carrie McKnelly, Athina Papadopoulou, Achuta Kadambi, Boxin Shi, Shai Hirsch, Daniel Dikovsky, Michael Zyracki, Carlos Olguin, Ramesh Raskar & Skylar Tibbits. Active Printed Materials for Complex SelfEvolving Deformations. *Scientific Reports*, 4, 7422; (2014).

[10] MingYou Shie, YuFang Shen, Suryani Dyah Astuti, Alvin KaiXing Lee, ShuHsien Lin, Ni Luh Bella Dwijaksara and YiWen Chen. Review of Polymeric Materials in 4D Printing Biomedical Applications[J]. *Polymers*, 2019, 11(11): 1864.

[11] Tuan Sang Tran, Rajkamal Balu, Srinivas Mettu, Namita Roy Choudhury and Naba Kumar Dutta. 4D Printing of Hydrogels: Innovation in Material Design and Emerging Smart Systems for Drug Delivery. *Pharmaceuticals* 2022, 15, 1282.

[12] Maziar Ramezani and Zaidi Mohd Ripin. 4D Printing in Biomedical Engineering: Advancements, Challenges, and Future Directions. *J. Funct. Biomater.* 2023, 14, 347.

[13] Matteo Gastaldi, Christoph A. Spiegel, Clara VazquezMartel, Claudia Barolo, Ignazio Roppolo, Eva Blasco. 4D printing of light activated shape memory polymers with organic dyes†[J]. *Molecular Systems Design & Engineering*, 2023, 8, 323329.

[14] Frédéric Demoly, JeanClaude André. 4D Printing: Bridging the Gap between Fundamental Research and RealWorld Applications [J]. *Applied Sciences*, 2024, 14(5669).

[15] Amelia Yilin Lee, Jia An, Chee Kai Chua. TwoWay 4D Printing: A Review on the Reversibility of 3DPrinted Shape Memory Materials. *Engineering*, 2017, 3(5): 663 -6