Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 4 No. 1, 2026 17

Research on Path Planning of Automated Parking Robots Based
on Improved RRT Algorithm

Zichuan Wang!, Yawen Fan®*, Jingfeng Shen'", Shikun Zhang!, Fangting Liu'
ISchool of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai,
China
2Sino-British International College, University of Shanghai for Science and Technology, Shanghai,
China
*Corresponding Author

Abstract: This paper proposed an improved
RRT path planning algorithm based on child
reconnection (RRT with Child Reconnection,
RRT-CRe). It addresses the limitations of the
basic Rapidly Expanding Random Tree (RRT)
algorithm in narrow, compact environments
like smart garages, where it suffers from
blind expansion and low sampling point
utilization during parking path planning. A
realistic =~ three-dimensional environment
model was first formulated for a selected
intelligent garage zone under weekday
peak-hour conditions, enabling accurate
representation of real-time occupancy.
Building upon this environment, a
goal-biased sampling and expansion strategy
enhanced by a child-reconnection mechanism
was proposed to overcome the inefficiency of
conventional RRT. To further ensure
feasibility under practical constraints, a
circumscribed-circle model was integrated
into the local rewiring phase, capturing the
geometric limitations of automated parking
robots and their surroundings. Results show
that in narrow and complex environments
involving multiple target points, the proposed
RRT-CRe algorithm substantially
outperforms the basic RRT, achieving an
average reduction of approximately 55% in
parking time and an improvement of about
45% in success rate. Moreover, when
compared with RRT¥*, a widely used
derivative of the basic RRT, RRT-CRe still
exhibits an increase of approximately 35% in
success rate. These results collectively
demonstrate that the proposed algorithm
satisfies the efficiency and reliability
requirements of automated parking robots in
challenging scenarios.

Keywords: RRT; Path Planning; Intelligent

Copyright @ STEMM Institute Press

Garage; Automated Parking Robot

1. Introduction

In recent years, with the continuous
improvement of living standards among Chinese
residents, the number of vehicles in circulation
has steadily increased. However, increasingly
scarce land resources coupled with outdated
parking space construction standards have
resulted in a severe shortage of parking spaces
in most cities [1]. Against the backdrop of the
accelerated integration of smart cities and
intelligent transportation, a variety of parking
facilities and technical solutions have emerged,
including traditional underground parking
garages, vertical circulation stereo parking
spaces, aisle stacking parking systems, and
intelligent parking garages based on automatic
parking robots.

Among these solutions, automatic parking
robots are highly aligned with the national
strategic expectations for smart city construction.
According to public data released by multiple
enterprises in the market, the application of
Automated Guided Vehicles (AGVs) can
increase parking lot utilization by at least 40%,
demonstrating broad application prospects [2].
In terms of space utilization, intelligent parking
garages based on automatic parking robots
eliminate pedestrian walkways; reduce
inter-vehicle gaps, and lower floor-to-floor
heights. Consequently, the number of parking
spaces that can be constructed under the same
floor area is significantly increased, while the
corresponding construction costs are reduced
accordingly.

In traditional parking garages, drivers are
required to search for parking spaces manually
without effective information guidance
mechanisms, resulting in low parking efficiency.
In contrast, intelligent parking garages based on
automatic parking robots transform the

http://www.stemmpress.com

18 Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 4 No. 1, 2026

"driver-searches-for-space” model into a
"space-waits-for-driver" model through
system-level scheduling. Additionally, they can
synchronize real-time parking space availability
information, enabling transparent parking status
visibility for both users and managers. This
significantly enhances parking convenience and
management efficiency [3]. Therefore, as shown
in Figure 1, the development of smart parking
facilities based on automated parking robots has
become one of the key technological approaches
to alleviating the urban parking supply-demand
imbalance [4]; and the efficiency with which the
automatic parking robot (shown in Fig. 2) can
complete parking tasks largely depends on the

¢ ¥ 7 NS~
Figure 1. Intelligent Garage Scenario Based
on Automatic Parking Robots
1-Unloaded Automatic Parking Robot
ing Automatic Parking

Robot

Figure 2. Automatic Parking Robot and
Target Vehicle to Be Parked

1-Unloaded Automatic Parking Robot
2-Vehicle-Carrying Automatic Parking Robot
Currently, path planning for automated parking
robots primarily relies on graph search
algorithms and sampling-based algorithms.
Graph search algorithms, such as A*, Dijkstra,
can ensure path optimality in 2D parking garage
scenarios. However, when applied to
multidimensional spatial environments featuring
multi-story buildings and narrow alleys, they are
prone to node explosions, leading to a sharp
decline in real-time performance [6]. In contrast,
sampling-based algorithms, such as the basic
Rapidly-exploring Random Tree (RRT)
algorithm, rely on probabilistic exploration
mechanisms to maintain efficient scaling
capabilities in high-dimensional environments

http://www.stemmpress.com

[7], making them more suitable for parking
scenarios in intelligent parking garages.

Therefore, numerous researchers have adopted
the RRT algorithm and developed various
optimized variants based on its inherent
advantages. The Quick RRT* (Q-RRT¥)
algorithm minimizes path cost by leveraging the
triangle inequality property, which involves
considering both neighboring points and their
ancestor nodes during parent node reselection
and path reconnection. However, the depth
values of ancestral nodes in this algorithm are
arbitrarily set, resulting in poor adaptability
across different scenarios [8]. The Stack-RRT*
algorithm generates nodes closer to obstacles
through a binary classification method, thereby
expanding the search range of potential parent
nodes, reducing initial path costs, and enhancing
the efficiency of random tree expansion.
However, generating paths for nodes near
obstacles relies heavily on collision detection,
which incurs additional computational time [9].
Other studies have combined Random Tree
Search (RRT) with Artificial Potential Field

(APF) methods. Considering the inherent
randomness of tree growth in the RRT*
algorithm, an approach that integrates

APF-guided sampling with RRT* is proposed to
enhance the directionality of the sampling
process [10]. The APF algorithm features a
simple structure and excellent real-time
performance, but path oscillation may occur in
areas with dense obstacles [11,12]. To enhance
robots' path planning capabilities in complex
environments, the AMP-RRT* algorithm
integrates heuristic backtracking with a local
obstacle avoidance mechanism, thereby
significantly improving path search efficiency
and global planning performance in complex
static environments [13]. Additionally, hybrid
methods have garnered significant attention in
recent years. For instance, a hybrid
Adapted-RRT (Adaptive Randomized Rapid
Tracking) approach is proposed that combines
sampling with meta-heuristic algorithms to
address three-dimensional path planning
problems [14]. However, this approach typically
relies on massive amounts of training data and is
sensitive to reward design, making it less
suitable for real-world parking tasks.

Given the significant advantages of RRT series
algorithms in computational cost and
high-dimensional adaptability, this study adopts
an improved RRT algorithm for the path

Copyright @ STEMM Institute Press

Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 4 No. 1, 2026 19

planning of automatic parking robots.
Corresponding optimization strategies are
proposed to address the issues of blind

expansion and low sampling point utilization
inherent in the basic RRT algorithm.

This paper presents a RRT with Child
Reconnectionalgorithm (RRT-CRe). The core of
this algorithm lies in introducing a goal-biased
strategy optimized by a sub-reconstruction
mechanism into the sampling and expansion
phases of the basic RRT algorithm. This design
achieves path quality optimization while
maintaining the algorithm’s real-time
performance, thereby enhancing its adaptability
to various complex scenarios. Meanwhile, the
obstacle avoidance phase of the algorithm is
optimized according to the physical dimensions
of the automatic parking robot and its operating
environment, making it more suitable for
lightweight and efficient intelligent parking
garage systems.

To verify the effectiveness of the RRT-CRe
algorithm, a 3D intelligent parking garage
environment is simulated in MATLAB.
Performance differences among the proposed
algorithm, the basic RRT algorithm, and the
RRT* algorithm are evaluated using three key
metrics: average path length, average parking
time, and planning success rate.

2. Problem Initialization and Environment
Modeling

2.1 Problem Initialization
Traditional RRT algorithms do not account for
robot dimensions during scaling, making
automated parking robots prone to colliding
with obstacles while navigating algorithmically
planned paths. As shown in Figure 3, an external
circle model for the automated parking robot
was established to address this issue. This
incorporates the dimensions of both the vehicle
body and the automated parking robot into the
algorithm, thereby improving practical
application. The expression for diameter D is
given by Equation (1):

=V7T 2 (1)
To simulate the three-dimensional environment
of an intelligent garage, the following
initialization steps are performed: 1) The
three-dimensional layout of the garage
environment must align with real-world garage
settings, with reasonable spacing between
parking bays and basic symmetry maintained; 2)

Copyright @ STEMM Institute Press

While ensuring sufficient width for the
automated parking robot to avoid collisions and
accommodating its maximum turning radius,
minimize the width of the driving lanes as much
as possible; 3) Assume the automated parking
robot travels at a constant speed, and disregard
its dwell time when calculating the average path
planning duration; 4) Model the automated
parking robot as a rectangular prism, with the
point-based robot in MATLAB representing the
center point of this prism; 5) In this 3D
environment, cylinders simulate pillar obstacles
within the garage, while cubes and rectangular
prisms represent different types of wvehicles
parked in the garage.
PRt N

A
/ L

I
\ W

eutomated Parkir}g

« Robot
S__-

Figure 3. External Circular Model for
Automatic Parking Robot

2.2 Environment Modeling

As shown in Figure 4, three distinct 3D planning
environments were constructed: a simple
environment with a single target point, a simple
environment with multiple target points, and a
narrow complex environment with multiple
target points. Among these, the narrow complex
environment with multiple target points most
closely resembles the intelligent garage
environment in which automated parking robots
operate.

o
f 8

a) Simple Environment Single Target

e
0

55. , L 3
19.5%.8

‘__ .. ’ 10

ll:)-/ x i 5 X/m
4 \".n’m:\l/ 0?0

b) Simple Environment Multi-Target Points

http://www.stemmpress.com

20 Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 4 No. 1, 2026

5
Y/m 1/0 -

¢) Multiple Target Points in a Narrow and
Complex Environment
Figure 4. Three Different 3D Planning
Environments

1-Starting Point

2-Ending Point

3-Target Point 1

4-Target Point 2

All maps measure 10m % 10m x 10m. In simple
environments, the start and end points are
positioned at opposite ends of the map: the start
point coordinates are (0, 2, 0) m, and the end
point coordinates are (10, 10, 0) m. In narrow,
complex environments, the end point is placed
at the center of the second floor. The algorithm's
maximum iteration count is set to 5000, with
other variable parameters adjusted accordingly
for different maps.

3. Basic RRT Algorithm

The Rapidly-exploring Random Tree (RRT)
algorithm is a path planning method based on
sampling. It iteratively generates randomly
sampled points in free space and greedily
extends the nearest node toward the sampling
direction by a fixed step size, thereby rapidly
constructing a search tree that covers the
feasible region. The algorithm incorporates new
nodes into the tree structure only after collision
detection confirms the extension path. Search
terminates when a new node enters the target
neighborhood, and the initial path is
reconstructed by backtracking along parent
pointers. Figure 5 illustrates the basic RRT
algorithm extension.

y
1 Xnear
L]
L] .Xnew
[]
pe i-‘\. .Xraml
Xstar.' ._/./' .Xg ~ lx,v Y
X- o Obstacle ~ &°°

Figure 5. Schematic Diagram of Basic RRT
Algorithm Extension
The flowchart of the basic RRT algorithm is
shown in Figure 6.

http://www.stemmpress.com

Initialize tree and configure

environment (Xstart,
Xgoal, Obstacles)

Sample a random point
Xrand in free space via

SampleFree()

l

Identify Xnear, the tree

node closest to Xrand, as
the parent of Xnew via
Nearest()

l

Extend Xnew from Xnear

toward Xrand at a preset

step via Steer()

Collision-free
Insert Xnew into the tree

|

N Distance from new node to

goal less than threshold
(ow

Figure 6. Basic RRT Algorithm Expansion
Flowchart

This algorithm rapidly constructs a search tree
in three-dimensional space by expanding nodes
through random sampling. After initializing the
starting point Xstart as the root node, the
algorithm enters the main loop: First, generate a
random sampling point Xrand within the
environment. Next, retrieve the nearest node
Xnear to Xrand in the search tree. Finally,
generate a new node Xnew along the direction
from Xnear to Xrand using a fixed step size Step.
After obtaining Xnew, perform collision
detection. If any collision is detected, return
“Collision,” discard this expansion, and proceed
to the next sampling round. Otherwise, add
Xnew to the tree node list. Iteration terminates
upon reaching the target region. SampleFree ()
is the sampling function, Nearest () locates the
nearest node to Xrand in the random tree, and
Steer() generates Xnew.

between parent and

new node

Y

Output path

4. Improved RRT Algorithm

4.1 Neighborhood Search

Neighborhood search begins during the
sampling phase by first identifying all existing
tree nodes Xi within a spherical region centered
at the new node Xnew with radius R, forming

Copyright @ STEMM Institute Press

Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 4 No. 1, 2026 21

the candidate reconnection set PotentialParent.
Subsequently, through parent pointer
backtracking, all ancestor indices are established
and collected into the set Index. Finally, a set
difference operation is performed on
PotentialParent to remove members common to
both PotentialParent and Index. This process
retains only non-ancestral nodes within the
neighborhood in PotentialParent, ensuring
subsequent reconnections occur exclusively on
non-ancestral nodes and thereby preventing loop
formation.
The neighborhood radius R determines how
many existing nodes participate in reconnection
during “sub-reconstruction.” However, selecting
a larger R is not necessarily better. While a
larger R increases the number of candidate
points and theoretically yields shorter, smoother
paths, it also causes computational complexity
and collision detection frequency to increase
linearly. Furthermore, it may introduce distant,
high-cost edges that dilute the effects of local
optimization. Experiments indicate that setting
R to five times the step size (R=5*Step) yields
optimal path planning performance. At this
value, the number of nodes within the
neighborhood precisely covers the primary
branches of the current expansion surface. This
approach fully leverages local information while
avoiding redundant computations and memory
overhead caused by excessive spans.
Consequently, the autonomous parking robot
demonstrates superior path length, smoothness,
and real-time performance in intelligent garage
scenarios compared to settings with larger or
smaller R values.
As shown in Table 1, the impact of R on the
performance of the improved algorithm in this
paper was investigated across three
metrics—average path length, average time, and
success rate—under a simple single-target-point
scenario.
Table 1. The Impact of Neighborhood Range
R on Algorithm Performance

R Average Average time | Success
length/m spent/s rate
2*Step 23.56 13.57 58%
4*Step 19.72 9.85 100%
5*Step 13.54 6.71 100%
6*Step 16.88 9.07 100%
8*Step 20.35 11.56 97%

After 100 repeated experiments, optimal

performance was achieved when the

neighborhood radius R was set to 5*Step.

Copyright @ STEMM Institute Press

Therefore, R=5*Step is recommended as the
optimal connection radius for parking robot
operation scenarios.

4.2 Target Bias Strategy

The target bias strategy employs a sampling
function that incorporates a sub-reconstruction
strategy to select sampling points. The sampling
function is defined as in Equation (2):

goal =
randx ={ , < < (2)

rand , =

In the formula: Xrand represents the random
sampling point; P is a random number between
0 and 1; a and b (a < b) denote the target
sampling probability and random sampling
probability, respectively. First, generate Xrand
on the map; second, select the method for
generating Xrandx based on the relationship
between P, a, and b. The smaller |a-b| is, the
more likely Xgoal or Xrand will be selected as
the sampling point. Conversely, the larger |a-b|
is, the more likely a point Xi within the
neighborhood range R of Xnew will be chosen
as a child node for path expansion, i.e., the child
reconstruction strategy.
When selecting Xi, first perform cumulative
cost evaluation followed by integrated cost
calculation. Cumulative cost evaluation is
expressed as in Equation (3):

C()>C(new)+|| new || (3)
In the formula: Xi represents a candidate node
within the neighborhood, c(X) denotes the
cumulative cost from the starting point to node
X, and || X—Y]|| is the Euclidean distance between
points X and Y. If the cumulative cost is less
than the original cost of Xi, it has the
opportunity to become a child node of Xnew.
The target Dbias strategy employs a
distance-weighted approach to compute the
integrated cost for nodes within neighborhood R.
To comprehensively account for both the
distance between node Xi and the target point
and the distribution characteristics of the tree
structure, the distance-weighted method is
selected for calculation. The weighting
coefficients are dynamically adjusted based on
factors such as the target distance. Specifically,
for each candidate node Xi within neighborhood
R, its integrated cost is calculated as shown in
Equation (4):

08 ew()+02 a()1= 1()>08

={ 1) e) F 20) e).082 1()202 (4)
02 ,o()+08 ,u(102> 4()>0

http://www.stemmpress.com

22 Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 4 No. 1, 2026

new()= ~ new
:\/(- new)2+(- new)2+(- new)2 (5)
goal()= ~ goal
:\/(- goal)2+(- g0a1)2+(- goa1)2 (6)

In the formula: Ci represents the integrated cost
of Xi; wl(s) and w2(s) denote the weight
coefficients for the distance between Xi and the
new node and the target point, respectively;
Dnew (Xi) indicates the Euclidean distance
between Xi and Xnew; Dgoal (Xi) indicates the
Euclidean distance between Xi and the target
point. In the early phase, wl(s) is relatively
large, and Dnew (Xi) has a greater influence on
Ci, allowing for thorough directional
exploration around Xnew. In the later phase,
w2(s) is relatively large, and Dgoal (Xi) has a
greater influence on Ci, enabling rapid
convergence toward the target point and
enhancing directionality. Nodes with lower
integrated costs are more likely to be selected as
child nodes. This achieves automatic adjustment
of the proportion of paths in both parts, making
the integrated cost function more valuable for
reference.

The dynamic adjustment mechanism refers to:
during path expansion, the weights wl(s) and
w2(s) are dynamically adjusted based on
changes in the distance between Xnew and
Xgoal, thereby achieving a balance between
exploration and convergence. During the early
search phase, the system favors increasing wl(s)
to enhance tree expansion and diversity. In the
later search phase, as the tree gradually
approaches the target region, the weight of w2(s)
is elevated to strengthen goal orientation,
accelerating the path's convergence toward the
target point. This dynamic strategy effectively
balances global exploration and local
convergence, significantly improving expansion
efficiency.

As shown in Equations (7) and (8), wl(s) and
w2(s) are computed based on the distance s to
achieve dynamic adjustment:

1()={ﬂ' © T ()
02, goal2
20)=1—= 1() (8)

In the formula: sgoal represents the straight-line
distance between Xnew and Xgoal; s denotes
the Euclidean distance between Xgoal and
Xstar.

The target bias strategy employs sampling
functions and cumulative, integrated cost to

http://www.stemmpress.com

achieve path exploration. Appropriate selection
of a and b not only enhances the diversity
required during the early stages of path
exploration but also ensures rapid convergence
toward the target point in later stages. This
minimizes the deviation of Xnew and Xgoal
from the target point Xi, aligning them as
closely as possible along the same straight line
and thereby increasing the efficiency of
directional guidance.

4.3 Local Rewiring

Local rewiring involves a two-step
“cost-collision” dual evaluation. First, compare
the integrated costs one by one among all Xi
that satisfy the cumulative cost requirements.
Second, select the node with the lowest
integrated costs among collision-free
reconnections. As shown in Figure 7, the
collision assessment employs the center-point
safety distance method. Based on the external
circle model of the automated parking robot
described earlier, the robot is treated as a
rectangular prism. The MATLAB point-based
robot is considered the center point of this prism.
The center point must maintain a safe distance
from obstacles without collision. Any collision
or failure to maintain the safe distance is
deemed a collision.

mo\:/}.\[:

Op—:.

Figure 7. Schematic Diagram of Center Point

Safe Distance Method
The specific steps are as follows: When the
point robot traverses the path between Xi and
Xnew, detect whether there are obstacles within
the spherical region centered at the point robot
with a diameter equal to the safety distance D.
Finally, redirect the parent pointer of the
compliant node Xi to Xnew and update the cost
c (Xi).

4.4 RRT-CRe Algorithm Flow

The RRT-CRe algorithm flow is shown in
Figure 8, with its extension illustrated in Figure
9.

Copyright @ STEMM Institute Press

Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 4 No. 1, 2026 23

This algorithm employs a sub-reconstruction
strategy and target bias strategy to optimize path
generation, enhance path planning efficiency,
and ensure paths better align with the
operational environment of automated parking

robots.

Initialize problem and
build model

Input: Xrand, Xgoal,
P1,a,b.

Select sampling
strategy

a<P1<b

Xrandx=Xrand

Xrandx=Xgoal

Xrandx=Xi

I

Generate
neighborhood R

[Filter Xi by cumulative|
cost and retain

qualified nodes

Compute composite
cost Ci and select the

minimum Ci

Generate path

cn

Figure 8. Improved RRT-CRe Algorithm
Overall Flowchart

goal

Figure 9. Improved RRT Expansion Diagram

5. Simulation Analysis

5.1 Environment Configuration

To validate the performance of the RRT-CRe
algorithm, a simulation environment was
established using MATLAB on a Windows 10

Copyright @ STEMM Institute Press

computer. The path planning capabilities of the
three algorithms were compared within the
previously described environment. The
experimental hardware configuration comprised
an Intel® Core™ i7-10750H CPU@2.60GHz
processor, a S00GB solid-state drive, and 16GB
RAM.

5.2 Result Comparison

Simulation comparisons were conducted on the
results of the basic RRT algorithm, RRT Star
algorithm, and RRT-CRe algorithm under
different environments to validate the
effectiveness of the RRT-CRe algorithm. The
simulation results are shown in Figures 9 to 11.
The curved segments in the figures represent
redundant paths generated during the
algorithm's exploration process, while the
straighter segments indicate the final paths
determined by the algorithm.

As shown in Figures 10-12, under appropriate
parameters, all three algorithms can find a
feasible path from the starting point to the target
point. Among them, the path generated by the
basic RRT algorithm contains a large number of
redundant nodes and exhibits overall low quality.
The RRT Star algorithm demonstrates a certain
improvement in quality compared to the basic
RRT algorithm, with reduced redundant nodes
and path length in the planned path. Compared
to the previous two algorithms, the RRT-CRe
algorithm significantly reduces redundant nodes
in the path and noticeably shortens the path
length, further enhancing path quality.

Z/im

5 L
X/m Y/m 0 10

a) Basic RRT b) RRT Star

0 19 5 y/im
¢) RRT-CRe
Figure 10. Experimental Results in a Simple
Environment with a Single Target Point
1-Start
2-End

http://www.stemmpress.com

24 Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 4 No. 1, 2026

40 10

3
a) Basic RRT

b) RRT Star

Z/m

5 7 i
4 + i
A
: ~— ¥l 5 _
10 Ws] 51/";3 / 5 X/m
¢) RRT-CRe
Figure 11. Experimental Results in a Simple
Environment with Multiple Target Points
1-Starting Point
2-Ending Point
3-Target Point 1
4-Target Point 2

1}
10

¢) RRT-CRe
Figure 12. Experimental Results in Narrow
and Complex Environments with Multiple
Target Points
1-Starting Point
2-Ending Point
3-Target Point 1
4-Target Point 2
As shown in Tables 2 to 4, the planning results
of the three algorithms under the three scenarios
mentioned above are compared. Since this study
investigates sampling algorithms with
randomness, all experiments were conducted
under optimal parameter conditions to ensure
reliability. Each scenario underwent 1000
repeated experiments, with the average values of
each metric serving as the final results.

http://www.stemmpress.com

Table 2. Algorithm Performance Comparison
in Simple Environment Single-Target

Scenarios
. Average Path | Average | Success
Algorithm Length/m |[time spent/s| rate
Basic o
RRT 19.28 2.71 100%
RRT Star 16.07 0.76 100%
RRT-CRe 15.46 0.79 100%

As shown in Table 2, in the scenario of a single
target point in a simple environment, all three
algorithms achieved a success rate of 100%. The
path lengths generated by the RRT-CRe
algorithm and RRT Star were reduced by
19.81% and 16.65%, respectively, compared to
the basic RRT. In terms of average time
consumption, both the proposed algorithm and
RRT Star achieved significant reductions
relative to the basic RRT. Although the proposed
algorithm's time consumption was comparable
to RRT Star in the simple environment with a
single target point scenario, it demonstrated
substantial improvement over the basic RRT.

As shown in Table 3, in the simple environment
with multiple target points, the RRT-CRe
algorithm demonstrates significant
improvements over both the basic RRT and RRT
Star algorithms. In terms of average path length,
the RRT-CRe algorithm reduces the average
path length by 32.68% and 9.40% compared to
the basic RRT and RRT Star algorithms,
respectively. In terms of average time, the
RRT-CRe algorithm reduced the time by 63.04%
and 64.55% compared to the basic RRT and
RRT Star algorithms, respectively. In terms of
success rate, only the RRT-CRe algorithm
achieved a 100% success rate. This
demonstrates that the RRT-CRe algorithm
exhibits stronger adaptability to multi-objective
points than the other two algorithms.
Furthermore, the average time consumption
reveals that RRT Star exhibits limited
optimization of the global path during the
expansion phase due to restricted exploration
directions, resulting in a narrow optimization
scope and relatively longer execution times. In
contrast, RRT-CRe overcomes these associated
issues.

As shown in Table 4, the RRT-CRe algorithm
also demonstrates superior performance in
scenarios involving multiple target points within
narrow, complex environments.

In terms of average time consumption, the
RRT-CRe algorithm reduces the time required

Copyright @ STEMM Institute Press

Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 4 No. 1, 2026 25

by 56.78% and 31.99% compared to the basic
RRT algorithm and RRT Star algorithm
respectively, significantly accelerating path
planning speed under multi-target point
conditions in narrow, complex environments. In
terms of success rate, the RRT-CRe algorithm
achieved 100%, significantly outperforming the
other two algorithms. This demonstrates that in
scenarios resembling intelligent garage
environments—characterized by narrow,
complex spaces and multiple target points—the
RRT-CRe algorithm enables automated parking
robots to efficiently handle path planning
challenges.

Table 3. Algorithm Performance Comparison

in Simple Environment Multi-Target

Scenarios
. Average Path | Average | Success
Algorithm Length/m |[time spent/s| rate
Basic o
RRT 26.07 2.57 61.5%
RRT Star 19.37 2.68 90.2%
RRT-CRe 17.55 0.95 100%

Table 4. Performance Comparison of
Algorithms in Narrow and Complex
Multi-Target Environments

. Average Path Av.e "8 | Success
Algorithm time
Length/m rate
spent/s
Basic RRT 31.14 5.46 55.1%
RRT Star 28.85 3.47 65.4%
RRT-CRe 26.64 2.36 100%

6. Conclusion

Through in-depth research on the
Rapidly-exploring Random Tree (RRT)
algorithm, this study addresses the inherent
limitations of the basic RRT algorithm that
hinder its direct application to the efficient path
planning of automatic parking robots.
Specifically, the basic RRT algorithm exhibits
excessive randomness, which tends to generate a
large number of invalid nodes in narrow
corridors and multi-obstacle scenarios, resulting
in low sampling utilization. To mitigate these
issues, this paper improves the sampling and
expansion phases of the basic RRT algorithm,
proposes a goal-biased strategy optimized by a
sub-reconstruction mechanism, and adapts the
collision detection step to the specific operating
environment of automatic parking robots.
Simulation experiments conducted in MATLAB
demonstrate that the RRT-CRe algorithm

Copyright @ STEMM Institute Press

achieves a significant reduction in planning time
compared to the basic RRT algorithm in simple
single-target-point environments. Furthermore,
the RRT-CRe algorithm outperforms the RRT*
algorithm in terms of planning success rate in
narrow, complex multi-target-point
environments. These results indicate that the
RRT-CRe algorithm possesses superior
adaptability to complex scenarios compared to
both the basic RRT and RRT* algorithms. It
enhances the purposefulness of the sampling
process to a certain extent, playing a crucial role
in improving the path planning success rate and
reducing planning time for automatic parking
robots in intelligent parking garages. Thus, this
study provides a more lightweight, efficient, and
reliable solution for path planning technology.

References

[1] Wang L, Zhu X, Li Z, et al. Ultrasonic
Obstacle Avoidance and Full-Speed-Range
Hybrid Control for Intelligent Garages.
Sensors, 2024, 24(17):5694-5696.

[2] Jiang N, Han Y. Patent technology
development of intelligent stereo garage.
China Science and Technology Information,
2024, (14): 31-33.

[3] Neeru M, Mamta M, Jude D H, et al. Deep
learning and saliency-based parking IoT
classification under different weather
conditions. Intelligent Decision
Technologies, 2024, 18(2):1411-1424.

[4] Venkata S, Sai M, Yaswanth T, et al. Smart
garage utilizing Internet of Things (IoT).
Journal of Sensors, 2022, 1156(22):
255-265.

[5] Ren Z, Cai A, Xu F. Automated guided
vehicle (AGV) path optimization method
based on improved rapidly-exploring
random trees. Computer Science, 2025, 11:
15-24.

[6] Zhao X, Wang K, Zhang P, et al. An
improved RRT* path planning algorithm
combining Gaussian distributed sampling
and depth strategy for robotic arm of

fruit-picking robot. = Computers and
Electronics in Agriculture, 2025, 207:
111244.

[7] Venu S, Gurusamy M. A comprehensive
review of path planning algorithms for
autonomous navigation. Results in
Engineering, 2025, 28: 107750.

[8] Jeong I, Lee S, Kim J. Quick-RRT*:
Triangular Inequality-based Implementation

http://www.stemmpress.com

26 Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 4 No. 1, 2026

of RRT* with Improved Initial Solution and
Convergence Rate. Expert Systems with
Applications, 2019, 123:82-90.

[9] Bin L, Yi H, Fang W, et al. Stack-RRT*: A
Random Tree Expansion Algorithm for
Smooth Path Planning. International Journal
of Control, Automation and Systems, 2023,
21(3): 993-1004.

[10]Wang H, Zhou X, Li J, et al. Improved
RRT#* algorithm for disinfecting robot path
planning. Sensors, 2024, 24(5): 1417.

[11]Jun D, Yin Z, Xia H, et al. An improved
RRT* algorithm for robot path planning
based on path expansion heuristic sampling.
Journal of Computational Science, 2023, 67:
102085.

http://www.stemmpress.com

[12]Wu Z, Dai J, Jiang B, et al. Robot path
planning based on artificial potential field
with deterministic annealing. ISA
Transactions, 2023, 138:74-87.

[13]Yang Z, Hu J, Zhao H. AMP-RRT*: an

adaptive multi-layer path planning
algorithm for robots in complex
environments. Engineering Research

Express, 2025, 7(3): 12-19.

[14]Kiani F, Seyyedabbasi A, Aliyev R, et al.
Adapted-RRT: novel hybrid method to solve
three-dimensional path planning problem
using sampling and metaheuristic-based
algorithms. Neural = Computing and
Applications, 2021, 33(24): 17129-17159.

Copyright @ STEMM Institute Press

