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Abstract: Stock price forecasting is a vital
task in financial time series analysis.
Traditional linear models (e.g., ARIMA, VAR,
LASSO) fail to capture long-term
dependencies and nonlinearities, while
tree-based methods such as XGBoost depend
heavily on feature engineering. This study
proposes a dual-layer LSTM framework with
differenced targets, Dropout regularisation,
Huber loss, and adaptive optimisation
strategies. Daily data of SPDB (2018-2024)
are split into training, validation, and testing
sets (70/10/20). Financial indicators are
aligned with market data using carry-forward
methods, and 12 high-quality factors are
selected via IC analysis. The model is
benchmarked against ARIMA, ARIMAX,
XGBoost, and Transformer, evaluated by
MAE, MSE, RMSE, and R2. On the test set,
the dual-layer LSTM achieves superior
performance (MAE=0.0972, RMSE=0.1455,
R?=(.9848). Robustness and ablation analyses
confirm that its deep architecture, resilient
loss function, and factor integration
collectively enhance accuracy, convergence,
and stability, demonstrating its effectiveness
in modelling complex financial time series.
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Learning; Deep Learning; Long Short-Term
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1. Introduction

Forecasting stock prices is a long-standing topic
in financial time series research, aimed at
improving investment decisions by uncovering
historical patterns. Traditional models such as
ARIMAJ1] and VAR are theoretically
comprehensive for stationary series but
constrained by linear assumptions, limiting their
ability to capture nonlinear volatility and
long-term dependencies. Regression methods
like LASSO (Tibshirani, 1996) [3] assist in
factor selection but fail to model nonlinear
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interactions. More recently, tree-based models
such as XGBoost (Chen & Guestrin, 2016) [4]
have shown strength in nonlinear fitting and
feature selection, though they still depend
heavily on manual engineering and weakly
represent temporal dynamics.

With deep learning advances, RNNs, LSTMs
(Hochreiter & Schmidhuber, 1997) [6], and
GRUs have become central to stock prediction,
with LSTM widely applied in finance (Fischer &
Krauss, 2018) [7]. Extensions include
CNN-LSTM hybrids, attention-enhanced
LSTMs, and Transformers for long-sequence
modelling (Zhou et al., 2021) [8]. More recent
studies integrate GANs with Transformers to
enhance accuracy and robustness (Li & Xu,

2025) [9].
Nonetheless, existing work has two main
shortcomings: shallow models often exhibit

noise sensitivity and unstable convergence, and
most studies rely on single variables such as
closing prices, neglecting systematic factor
engineering [5]. To address this, this study
proposes a dual-layer LSTM with multi-factor
integration. The framework employs Dropout,
Xavier initialization, gradient clipping, dynamic
learning rate scheduling, and Huber loss to
enhance stability and generalization. Data are
chronologically segmented and standardized,
with high-quality factors selected via IC analysis
to ensure consistency and reliability [10].

2. Research Methodologies and Innovative
Elements

2.1 Research Methods

Long Short-Term Memory (LSTM) networks are
an evolution of recurrent neural networks
(RNNs).  While RNNs derive temporal
expressiveness from recurrent feedback loops,
they  often  struggle with  long-range
dependencies due to vanishing or exploding
gradients. LSTMs address these limitations by
introducing a memory cell and gating
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mechanisms that selectively preserve and update
information across time steps [11]. The memory
cell acts as a “conveyor belt,” transmitting
essential information while filtering redundant
signals. This process is regulated by three
gates-Forget, Input, and Output-that jointly
balance memorization, update, and information
release [12].

Forget Gate — determines the extent to which
past memory is retained or discarded:

= ( [ «al+ ) (1
Input Gate & Candidate Memory — update
the cell state with new information:

= C [, «l+) 2
=tanh( [ . ]+ ) 3)
C = C 1+ C (4)

Output Gate — regulates how much of the
memory flows to the hidden state:

= C [, «al+ ) )
= tanh( ) (6)
Through  this  structured sequence  of

forget—update—output, LSTMs maintain stable
gradient propagation and effectively capture
nonlinear, long-term dependencies,
outperforming conventional RNNs in financial
time series forecasting.

As illustrated in Figure 1, the LSTM cell
comprises three interacting gates-input, forget,
and output-that collectively regulate information
flow across time steps.
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Figure 1. Schematic Diagram of LSTM
Neurons

At the neural level, this mechanism is supported
by activation functions that introduce
nonlinearity, enhancing learning efficiency and
representational capacity. The sigmoid and
hyperbolic  tangent (tanh) functions are
fundamental in regulating information flow
within the gates:

O=g7=0< O<1 O

tanh( ) =——,—1<tanh( ) <1 (8)
These activation functions ensure that
information retention, update, and release occur

within bounded ranges, thereby stabilizing
training and improving the robustness of LSTM
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models in sequence prediction tasks.

2.2 Innovative Features

In financial time series forecasting, relying
solely on closing prices inadequately reflects
market dynamics [20]. It is thus necessary to
integrate multiple indicators representing price
movements, though excessive inclusion risks
redundancy and noise [19]. To address this, a
factor screening mechanism based on statistical
testing is introduced, replacing traditional
empirical or full-factor selection [13]. This
process  eliminates ineffective  variables,
enhances interpretability, and aligns prediction
outcomes with factor variations. Financial and
technical features are synchronised using a
“disclosure lag + carry-forward” approach to
ensure temporal consistency [18]. Information
Coefficient (IC) analysis is applied to assess
factor predictive power, combining IC values,
t-statistics, and positive IC ratios as selection
criteria. Ultimately, 12 core factors-including
Bollinger Bands, momentum, moving averages,
Fourier components, and ATR-are retained as
inputs for LSTM modeling [14].

Building on a single-layer LSTM, a dual-layer
hierarchical structure is proposed. The first layer
captures local dependencies and short-term
variations, while the second consolidates
cross-period information to extract long-term
trends, enabling progressive integration from
local to global features [15].

To further improve stability and generalization,
several optimizations are adopted.
Standardization is fit only on the training set to
prevent leakage. Huber loss replaces MSE for
robustness to anomalies [16]. Gradient clipping,
Dropout, L2 regularization, and adaptive
learning rates ensure smooth convergence and
limit overfitting. Xavier initialization mitigates
gradient issues in deeper recursions. These
combined structural and training enhancements
strengthen the model’s ability to capture
nonlinear dynamics and long-term dependencies
[17].

3. Experimental Research

3.1 Data Acquisition

This study employs historical stock data of
Shanghai Pudong Development Bank (SPDB)
from 2018 to 2024, obtained via the Tushare
platform. The dataset contains 14 daily-level
fields, including trading date, stock code, open,
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high, low, close, pre-close, price change,
percentage change, volume, value, and company
fundamentals. The closing price (Close) is
selected as the dependent variable, as it is less
affected by intraday volatility and better reflects
market consensus. A time series chart of SPDB’s
closing price is constructed to illustrate its
dynamic trend and provide the foundation for
subsequent modeling and analysis. As shown in
Figure 2, a time-series chart of SPDB’s closing
price is constructed to illustrate its dynamic
trend and provide the foundation for subsequent
modeling and analysis.
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Figure 2. Shanghai Pudong Development
Bank Stock Closing Price Time Series Chart
By examining the closing price trend of
Shanghai  Pudong  Development  Bank
(2018-2024), the series is overall non-stationary

with phased fluctuations. Prices fell sharply from
2018 to 2019, partially recovered in 2020-2021
but remained in a descending channel, reached a
nadir in 2023, and rebounded markedly in early
2024, maintaining an upward trajectory
thereafter. Despite volatility, the long-term trend
over the last two years indicates a transition
from decline to recovery.

Building on this analysis, company-level
financial data are integrated to enhance factor
comprehensiveness. Multidimensional
disclosures-including profitability (e.g., ROE,
gross and net profit margins), growth (e.g.,
revenue and net profit growth rates), operations
(e.g., asset turnover, receivables turnover), and
cash flow (e.g., operating and free cash flow)-are
combined with market indicators such as trading
price and volume. These wvariables provide
fundamental  perspectives = on  operating
conditions and risk, while offering explanatory
elements linked to stock price dynamics. The
approach thus achieves feature-level fusion of
financial and technical information, enabling a
more complete characterization of SPDB’s price
evolution and establishing a robust foundation
for factor screening and modeling. The obtained
financial (partial) data is shown in Table 1.

Table 1. Financial Data(Partial)

Stock Name | YOYLiability | rogAvg

npMargin

YOYEquity | AssetTurnRatio | CFOTooR

SPDB 0.0632 0.0585

0.3109

0.0918 0.0135 2.7429

3.2 Data Preprocessing
The dataset, comprising raw daily market and
multidimensional financial data, was rigorously
cleansed and standardized to ensure reliability.
Field anomalies were rectified through type
conversions (e.g., date to datetime, numeric to
float) and removal of erroneous values. Missing
entries caused by disclosure schedules or trading
suspensions were imputed using a unified
forward—backward method across securities and
time series.
To mitigate the impact of extreme values,
outliers beyond the 30 rule [ —3 , +3 ]
were detected and winsorized at both tails.
Continuous variables were then normalized to
[-1,1] using:

Xscaled_zx —- -1 (9)

where in and . denote the minimum and
maximum values during the sample period. This
process compresses value ranges, maintains
monotonicity, and prevents large-scale variables
from dominating optimization, yielding clean

X~Xmin
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and comparable inputs for factor selection and
dual-layer LSTM modeling.

3.3 Feature Engineering
This research identifies five types of
information-trend, volatility, momentum,
volume, and cycle-by selecting 12 indicators
from the technical and financial indicator pools
based on IC size comparisons for incorporation
into the model. Let the closing price, high price,
low price, and trading volume be represented as
, » ,V.The n-day rolling windows for the
simple moving average (SMA) and standard
deviation (Std) are designated as

MA():E :—01 _ (10)

- 2
nOm 5 T CrMAw) ()
Trend Category
1. MA14 (14-day simple moving average)

MAL4() == 2 (12)
2. MA21 (21-day simple moving average)
MA21() = % - (13)
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3. EWMA26 (26-day Exponentially Weighted
Moving Average, = 2/(26+ 1)
EWMA26()=  +(1— )EWMA26( —1), =2—27 (14)
4. Bollinger Middle Band (20)
BBMiddle y = MA20( ) (15)
5. Bollinger Band Upper Band (20, 20)
BB_upper( ) = MA20( ) +2 () (16)
6. Bollinger Band Lower Bound (20, 20)

ATR14() == 2 TR( = )(20

4
Momentum and Energy

8. Price Momentum (10-Day Logarithmic
Momentum)

MOM10( ) = In(—) (20)

-10
9. Volume Momentum (1-Day Logarithmic
Momentum)

VoIMOM1( ) = In(—) 1)

-1

Periodic / Frequency Domain
(Apply a sliding window of length N at time t to
perform the DFT on ( — 4q,.., ); in this
study, N is chosen to be consistent with the
sampling rate, e.g., 64 or 128.)
Denote the complex coefficient of the k -th
discrete frequency as

= 3 - "2/ (22)
10. First-order = harmonic  amplitude
(Fourier-1)

Fourier () =] 1) (23)

11. Fifth-order = harmonic amplitude
(Fourier-5)

Fourier_s( ) == 5()| (24)
Robust Reinforcement
12.  20-day rolling standard deviation
(volatility proxy)

Std20( ) = 20() (25)
All factor calculations are conducted on a rolling
window with a left-open and right-closed
interval, ensuring that indicators at time
depend only on known data within[ — +1, ];
Parameters (mean, standard deviation, rank
transformation) are standardized on the training
set and directly applied to validation and testing,
while cross-sectional variables are aligned by
same-day z-scores to ensure comparability and

stationarity.  Price-based indicators  adopt
intra-series  standardization for  temporal
consistency.

After handling missing values, constant series,
and extreme values, candidate factors are
screened using the cross-sectional information
coefficient (IC) to evaluate their linear relation
with future returns. Since the dataset involves a
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BB_lower( ) = MA20( ) —2 () (17)
Fluctuating Category
7. ATR14 (14-day smoothed average of Wilder's
Average True Range) First define the Average

True Range
TRO=max{ — | — |l — l}I8)
Subsequently,  acquire  utilizing  Wilder
smoothing (or Simple Moving Average)

14( ) = SATR14( — 1) +=TR()) (19)

single stock rather than a cross-sectional sample,
the IC here is adapted to measure time-series
correlations between factor values and future
returns. The daily IC series is used to compute
the mean, standard deviation, fraction of positive
ICs, and Newey—West (HAC) adjusted
t-statistics. Factors are selected according to
absolute mean IC, statistical significance, and
proportion of positive ICs, with robustness
required across horizons {1,5,10,20} Based
on IC ranking of correlation with future returns
(see Table 2), the final set of high-quality factors
is retained.

Table 2. Results of Information Coefficient

(IC) Tests for Candidate Factors

Factor Name IC [T Positive IC Ratio
Momentum 10 0.230[2.17 65.0%
Lower band 0.230[22.23[100.0%
\Upper band 0.134{12.43]100.0%
Volume Momentum|0.133[1.94 |57.0%

BB middle 0.124(7.57 93.6%
Rolling 21 0.1106.27 [84.0%
EWMA 26 0.1096.21 [84.0%
MA14 0.108(6.10 [84.0%
MA21 0.108(6.10 [84.0%
Fourier 5 0.1016.16 [84.0%
Fourier 1 0.088(5.65 [74.0%
ATR 0.025[2.35 [70.0%

3.4 Evaluation Metrics
To comprehensively evaluate the performance of
price prediction, this study employs three
metrics: mean absolute error (MAE), mean
squared error (MSE), root mean squared error
(RMSE), and the coefficient of determination
(R?). Let the sample size of the test set be
with the actual and predicted values denoted by
y and Yy, respectively, and =1 —; - The
four metrics are defined as follows:
Mean Absolute Error (MAE)

wae == Iy =V (26)
The Mean Absolute Error (MAE) provides a
clear depiction of the average deviation size,
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maintains the same dimensionality as the
original pricing, is resistant to outliers, and
enables reliable comparisons among various
models.
Mean Square Error (MSE)

MSE =2 Ly - )? (27)
MSE is dimensionless and directly proportional
to the square of the price. In contrast to MAE, it
prioritizes the significance of substantial
deviations, = magnifying  discrepancies in
prediction errors quadratically. It functions as an
essential statistic for assessing the overall fitting
precision of a predictive model.
Root Mean Square Error (RMSE)

RMSE — ’l -1 y -y )2 (28)

RMSE possesses the same dimensionality as
price; however, its squared component
exacerbates significant mistakes, rendering it
more responsive to spike variations. This
facilitates the accurate detection of model

discrepancies during times of significant
volatility.
Coefficient of Determination (R?)
2 _1_ :1( -y )2
:1( — )2 (29)

The R? metric quantifies the proportion of
variance elucidated in relation to the "sample
mean baseline," with a maximum value of 1 and
no minimum limit (it may fall below 0). A
greater value signifies a more robust fit.

All measures in this study are computed on a
rigorously time-segmented test set; data
normalization settings are only derived from the
training set and applied to validation and testing
to avert information leakage. In performing a
thorough assessment, reduced MAE, MSE, and
RMSE values, along with an elevated R? value,
signify enhanced performance.

3.5 Model Construction

Time-series samples are constructed under strict
information boundaries. Based on daily stock
data and technical factors, the dataset is divided
chronologically into training, validation, and test
sets (70%, 10%, 20%). After splitting, scale
transformation is applied to prevent information
leakage. With a time step of L=90, a sliding
window generates multivariate inputs: one
channel represents the price-difference sequence,
and 12 additional channels correspond to
technical features (moving averages, exponential
moving averages, Bollinger bands, volatility,
ATR, momentum, frequency-domain harmonics,
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etc.). The choice of = 90 reflects roughly one
quarter of trading days, allowing the model to
capture medium-term temporal dependencies
and periodic market fluctuations while avoiding
excessive sequence length that may hinder
convergence. The RobustScaler is fitted on the
training set. Consequently, the input tensor is
represented as ( ,1+ ), where denotes the
number of technical features.

The predictive framework is a dual-layer LSTM
network. The first layer contains 128 hidden
units to capture temporal dependencies, and the
second layer contains 64 hidden units to abstract
higher-order features. Dropout (0.15) is applied
between layers and outputs. Parameters are
initialized with Xavier normalization. Huber loss
is used as the training objective, and
optimization is performed with Adam,
accompanied by L2 regularization and gradient
clipping (norm=1.0). Learning rate scheduling
(ReduceLROnPlateau) and early stopping
prevent overfitting, while batch size is set to 64
with a maximum of 100 epochs. Data order is

strictly preserved to maintain temporal
consistency.
3.6 Model Comparison

To evaluate the performance of the dual-layer
LSTM model, this paper introduces ARIMA,
ARIMAX, XGBoost, and Transformer models
for comparison. To guarantee comparability, all
models adhere to an identical data processing
protocol: initially, time series data is segmented;
subsequently, standardized parameters are fitted
to the training set and applied to the validation
and test sets; ultimately, the input window and
target variable configurations remain uniform
across models.

ARIMA

The ARIMA(p, d, q) model is utilized to
represent the linear autoregressive structure of
the price difference sequence.

e(H)A-) = +6(), i.i.d.(0, ) (30)
Here, denotes the lag operator, with .o( )=1-
¢ — —-¢ 0()=1+ , + + The price
series is differenced once to achieve weak
stationarity, and the orders are selected based on
AIC, BIC, and residual diagnostics. For
reporting purposes, ARIMA(1,1,0) is taken as a
representative model for comparison. Parameters
are estimated using maximum likelihood
estimation, while the Ljung—Box test is applied
to validate the adequacy of model fitting.
ARIMAX
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In the ARIMA framework, the exogenous feature
vector (technical factors), consistent with the
deep learning model, is incorporated to form the
regression-type ARIMAX model:

o(H)1-) = + +0() @D
It can alternatively be represented as a lag
polynomial of the exogenous variables, ()
In contrast to the pure ARIMA model, ARIMAX
preserves the ARMA structure of the residuals
while explicitly integrating information on
trends, volatility, and momentum, thus
improving linear interpretability. The estimating
and diagnostic processes are the same as those
previously outlined.
XGBoost
Ensemble tree methods
modeling framework

= o O) (32)

and is optimized by a regularized objective
function based on the second-order Taylor

adopt an additive

expansion:

= (y)+ L00)00)= +3 _ 2(33)
In this context, represents the quantity of
leaves, the leaf weights, and the
regularization  terms  controlling  model

complexity and , penalty. At each iteration,
the first- and second-order gradients (g, ) of
the samples are used to compute the gain and

determine the optimal split. The input vector X,

is constructed by flattening and aggregating
price differences and technical factors within a
sliding window of length . Hyperparameters
(e.g., learning rate, maximum  depth,
subsampling rate) are tuned on the validation set
to ensure comparability.

Transformer

This study utilizes a self-attention architecture
consisting exclusively of stacked encoder layers
to depict the sliding-window sequence. Denote
the input sequence as * , which is
linearly embedded into (@ =
with positional encoding added to preserve
temporal information. Each encoder layer
consists of multi-head self-attention (MHA) and
a feed-forward network (FFN), combined with
residual connections and layer normalization in
the Pre-LN form:

X model
b

4. Experimental Results

4.1 Evaluation of the Predictive Performance
of the Dual-Layer LSTM Model

Figure 3 compares the projected trajectory of the
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trained two-layer LSTM with the actual
sequence over the first 250 observations. The
two curves align closely in overall trend, peaks,
troughs, and inflection points, with deviations
mainly during periods of high volatility. The
model responds effectively to short-term
changes and consistently captures medium-term
trends, demonstrating its ability to characterize
time-dependent structures.

LSTM Stock Price Prediction - 600000.SH

Figure 3. Dual-Layer LSTM Model

Prediction Visualization
Within the consolidated training framework, the
dual-layer LSTM reached its optimal validation
loss (0.2416) around epoch 10, with adaptive
learning rate decay and early stopping at epoch
25, indicating mild overfitting but stable
convergence. On the test set, it achieved strong
predictive accuracy (MAE=0.0972,
RMSE=0.1455, R?=0.9848), explaining most
variance in price fluctuations. Relative error
metrics (MAPE=1.24%, sMAPE=1.25%)
confirm minimal error magnitude. Visual
comparisons show close alignment with trends,
peaks, troughs, and inflection points, with
deviations mainly during high volatility. Overall,
the dual-layer LSTM demonstrates high efficacy
in numerical fitting and trend analysis, though
short-term directional classification leaves room
for improvement.

4.2 Comparative Experimental Analysis

As summarized in Table 3, the dual-layer LSTM
attains optimal performance with MAE = 0.0972,
RMSE = 0.1455, and R? = 0.9848, while the
Transformer achieves a slightly lower RMSE,
reflecting greater sensitivity to large errors.
LSTMs therefore show superiority in bias
control and explained variance, whereas
Transformers hold a minor advantage in RMSE.
Relative to statistical baselines, improvements
are substantial. Compared with ARIMA
(MAE=0.1602, RMSE=0.2451, R?=0.9186), the
LSTM reduces MAE and RMSE by 39% and
41%, and raises R? by 0.066. Against ARIMAX
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(MAE=0.1464, RMSE=0.2029, R>=0.9710), it
lowers MAE and RMSE by 34% and 28%, with
an R? gain of 0.014, underscoring the limits of
linear short-memory models in capturing
nonlinear, long-range dependencies.

Table 3. Comparison of Model Metrics

Method MAE |RMSE [R?

ARIMA 0.1602 10.2451 (0.9186
ARIMAX 0.1464 10.2029 0.9710
XGB 0.1472 10.2037 (0.9705
Transformer 0.1029 (0.1435 10.9722
Dual-layer LSTM [0.0972 10.1455 ]0.9848

Compared with XGBoost (MAE=0.1472,
RMSE=0.2037, R?>=0.9705), the LSTM reduces
MAE and RMSE by 34% and 29% while
improving R? by 0.014, indicating that tree
models, though effective in nonlinear fitting,
underperform in temporal representation without
sequential memory.

In comparison with Transformer, the LSTM
achieves 5.5% lower MAE and higher R?, while
the Transformer yields 1.4% lower RMSE.
Overall, by mean deviation and explained
variance, the LSTM remains the superior model.

5. Melting Experiments and Analysis
5.1 Ablation Study 1

Table 4. Comparison of Metrics Between
Single-Layer LSTM and Dual-Layer LSTM

Models
Construction MAE | RMSE R?
Single-layer LSTM | 0.0994 | 0.1486 | 0.9841
Dual-layer LSTM | 0.0972 | 0.1455 | 0.9848

As shown in Table 4, the dual-layer LSTM
model notably attained steady convergence by
the 41st iteration, but the single-layer LSTM
necessitated ongoing iterations until the 55th
iteration to obtain a similar level of convergence.
The dual-layer structure attains loss convergence
more rapidly, demonstrating enhanced efficiency
in feature extraction and gradient propagation.
As a result, both prediction accuracy and
training efficiency are improved. This discovery
corroborates the previous claim that “layered
feature extraction alleviates gradient vanishing
and enhances model stability,” hence reinforcing
the benefits of deep architectures in managing
intricate financial time-series data.

5.2 Ablation Study 2

As summarized in Table 5, the model trained
with Huber Loss showed marginal superiority
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over MSE across MAE, MASE, and R? Early
stopping occurred at iteration 41 versus 75 for
MSE, indicating faster convergence and greater
stability. This advantage arises because MSE is
highly sensitive to outliers, while Huber behaves
like MSE for small errors and shifts to L1 for
large ones, reducing the influence of extremes.
Although final metrics differ little, Huber Loss
achieves a better balance between convergence
efficiency and generalization, ensuring higher
accuracy with shorter training time. It is
therefore adopted as a suitable loss for
subsequent evaluations.

Table 5. Comparison of Huber Loss and MSE

Loss
Construction MAE MASE R?
Huber Loss  [0.0972 0.1455 0.9848
IMSE Loss 0.0991 0.1492 0.9839
5.3 Ablation Study 3

Table 6. Comparison of Dual-Layer LSTM
Model with Dropout vs. Dual-Layer LSTM
Model without Dropout

Construction IMSE [Number of]
iterations
Dual-Layer LSTM (dropout)  [0.800641

Dual-Layer LSTM (no dropout)0.8013|50
This research further investigates the influence
of Dropout on model convergence and
generalization performance through comparing
experiments on regularization procedures. In
terms of convergence speed, the dual-layer
LSTM with Dropout achieved early stopping at
the 41st iteration, whereas the model without
Dropout persisted until the 50th iteration; this
suggests that Dropout enhances the pace of
convergence to the optimal point on the
validation set. The mean squared error (MSE)
values for the Dropout and non-Dropout models
were 0.8006 and 0.8013, respectively, indicating
a minimal difference. In the experimental
conditions, Dropout did not markedly enhance
the final generalization error but did decrease the
iterations needed for convergence, as presented
in Table 6.

5.4 Ablation Study 4
Table 7. Comparison of Dual-Layer LSTM
Model with Feature Factors vs. Dual-Layer
LSTM Model without Feature Factors

Construction IMSE [R? INumber of]
iterations

Dual-Layer LSTM(factor) [0.8006/0.9844141

Dual-Layer LSTM (no factor) [0.8105(0.9840(75
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The multi-factor model reached early
termination at the 41st iteration, as shown in
Table 7, but the univariate model necessitated
iterations up to the 75th round for stable
convergence. This  suggests  that the
supplementary technological aspects expedited
the model optimization process to some degree.
Both models demonstrated comparable errors on
the training and validation datasets. On the test
set, the multi-factor model attained a mean
squared error (MSE) of 0.8006, indicating a
about 1.22% enhancement over the featureless
model's MSE of 0.8105. Simultaneously, R? rose
from 0.9840 to 0.9844, but MAE diminished
from 0.0995 to 0.0982. Despite being rather
modest, these increases regularly illustrate the
beneficial influence of technical aspects on
forecast accuracy.

6. Conclusion

In the experiments, the dual-layer LSTM
outperformed ARIMA, ARIMAX, XGBoost, and
even the Transformer-only model in predictive
accuracy and goodness-of-fit. This highlights the
strength of recurrent networks in capturing
nonlinear dependencies and validates the role of
hierarchical feature extraction in improving
stability and generalization. Convergence
efficiency was also superior: the dual-layer
LSTM converged at iteration 41 versus 55 for
the single-layer model, while replacing MSE
with Huber Loss reduced convergence time (41
vs. 75 epochs) and enhanced robustness to
extreme fluctuations. Dropout regularization
further stabilized training and mitigated
overfitting.

Incorporating technical factors identified via IC
analysis provided consistent gains over
single-variable inputs, enabling more effective
integration of multi-source information and
enhancing both predictive accuracy and
interpretability. ~ The  dual-layer LSTM’s
advantages thus stem from the synergy of its
hierarchical architecture and optimized training
strategy, confirming its practical value in stock
forecasting.

Nevertheless, limitations remain. The factor set
emphasizes technical indicators while omitting
sentiment or macroeconomic variables, and
experiments are restricted to the banking sector,
leaving generalization to other markets untested.
Moreover, despite faster convergence than
single-layer models, the architecture remains
sensitive to hyperparameters and
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computationally demanding. Future research
should expand factor types, including text and
macroeconomic data, and conduct broader

cross-market ~ validations  to  strengthen
robustness and applicability. In addition,
subsequent studies could explore

attention-enhanced recurrent structures (e.g.,
Transformer-LSTM  hybrids) and employ
Bayesian  or  reinforcement-learning-based
optimization for adaptive hyperparameter tuning.
Finally, integrating explainable Al tools such as
SHAP or Grad-CAM can further improve
interpretability and facilitate real-world financial
decision-making.
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