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Abstract: As an innovative product of
multi-disciplinary integration, embodied
intelligent robots break the functional
limitations of traditional robots. By achieving
in-depth interaction with the physical
environment to realize autonomous
decision-making, they have become a core
support for intelligent transformation. This
paper systematically sorts out their four
major development stages, constructs the
"perception-decision-action-feedback-learnin
g" core technical system, and details key
technologies such as multi-modal perception
and "big brain-small brain" collaborative
decision-making. Meanwhile, it analyzes four
major current challenges: lack of
standardization, dependence on core
components, talent shortage, and ethical risks,
and proposes five development directions:
technological innovation, industrial
collaboration, scene penetration, policy
improvement, and human-robot symbiosis.
The research provides multi-dimensional
references for scientific research, industrial
application, and policy formulation of
embodied intelligent robots, helping them
upgrade towards general intelligence and
promoting the construction of a new
production relationship of "technology
empowerment and human leadership".
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1. Introduction
In the continuous development of the artificial
intelligence field, embodied intelligent robots
are gradually occupying a key position and
becoming a core force driving industry progress.
Essentially, embodied intelligent robots are a
crystallization of multi-disciplinary technologies
including artificial intelligence, mechanical
engineering, and control science. They break the

limitation of traditional robots that can only
execute preset tasks, realize in-depth interaction
with the physical environment and autonomous
decision-making, and provide new solutions for
the intelligent transformation of various
industries.
This research aims to deeply analyze the
technical system, development status, and future
trends of embodied intelligent robots. Through
systematic research, it comprehensively reveals
the opportunities and challenges faced by
embodied intelligent robots in technological
innovation, application expansion, and industrial
development, providing valuable reference for
researchers, enterprise decision-makers, and
policy-makers in related fields.

2. Origin and Development History of
Embodied Intelligence
The concept of embodied intelligence can be
traced back to the origin stage of artificial
intelligence. In 1950, Turing proposed two
development paths for intelligence in Computing
Machinery and Intelligence [1], which later
evolved into two paradigms: disembodied
intelligence (focusing on algorithm optimization
and symbolic reasoning) and embodied
intelligence (emphasizing dynamic interaction
between the physical body and the environment
[2]). Its development process can be summarized
into four core stages:

2.1 Theoretical Foundation and Early
Practice
Gibson's ecological psychology [3] and Varela et
al.'s "enactive cognition" [4] laid the theoretical
foundation for embodied intelligence; Brooks'
"subsumption architecture" [5] and Pfeifer et
al.'s artificial life simulation [6] completed early
technical practices.

2.2 Rise of Morphological Computation and
Embodied Dynamics
The research focus shifted to "body-environment
collaboration". The theory of morphological
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computation [2] advocates realizing intelligent
behavior through physical structures. Studies by
Collins et al. [7] and Pfeifer et al. [8] confirmed
that using the interaction between morphology
and the environment can simplify control logic
and improve robot adaptability.

2.3 Establishment of Data-Driven Learning
Paradigm
Deep learning and reinforcement learning have
promoted the transformation of embodied
intelligence towards "data-driven adaptability".
Levine et al.'s deep visuomotor policies [9],
Haarnoja et al.'s soft actor-critic algorithms [10],
as well as projects such as OpenAI Dactyl [11]
and Google RT-2 [12], have deepened the
"perception-decision-action" closed-loop
cognition and expanded the application
boundaries.

2.4 Integration of Higher-Order Cognition
and Causal Reasoning
Current research focuses on higher-order
cognition and natural human-robot interaction.
Schölkopf et al. [13] proposed causal
representation learning, and Basu et al. [14]
realized transfer learning with small-scale causal
data. Today, embodied intelligence has gradually
been applied in fields such as industrial
automation and service robots, providing support
for industrial innovation.

3. Key Technologies of Embodied Intelligent
Robots
Embodied intelligent robots adopt the
"perception-decision-action-feedback-learning"
as the core closed-loop control logic. Through
the collaborative linkage of each link, they
realize autonomous operation in dynamic
environments—they can not only actively
capture multi-dimensional environmental
information but also generate adaptive decisions
based on preset algorithms, accurately execute
tasks, and iteratively optimize in real time,
ultimately achieving high flexibility and high
reliability in operation. Their core technical
system revolves around five key links:

3.1 Perception
Perception is the basic premise for the
decision-making of embodied intelligent robots.
It constructs environmental cognition through
multi-source sensors and fusion technologies to
ensure the rationality of subsequent decisions

and actions.
3.1.1 Multi-modal information perception
technology
Taking intelligent sensors with integrated data
processing functions as the core carrier, matched
with special sensors of different functions to
meet the needs of complex scenes. Among them,
MEMS sensors, with the advantages of small
size, low cost, and low power consumption, can
integrate multiple perception functions, adapting
to the application of robots in narrow or dynamic
scenes; brain-inspired vision chips such as
"Tianmou Chip" developed by Yang [15] et al.
can achieve high-speed, high-precision, and high
dynamic range visual information collection
under low bandwidth and low power
consumption conditions; in addition, visual
sensors undertake core tasks such as object
recognition and posture tracking, force sensors
support force control in precision machining,
and tactile sensors can simulate biological skin
to perceive material and grasping force. In the
future, this technology will further integrate edge
computing technology to improve real-time data
processing capabilities.
3.1.2 Multi-modal information fusion
technology
Comprehensively integrate different types of
environmental information in stages to provide a
comprehensive basis for accurate
decision-making. According to the fusion stage,
it can be divided into three types: early (raw data
layer), middle (high-dimensional feature layer),
and late (decision layer) [16]. Common methods
include basic concatenation and weighted
average, as well as cross-modal weight
assignment, modal relationship graph
construction, and multi-task collaborative
optimization based on preset logic. It is worth
noting that cross-modal alignment technology is
a key prerequisite, which needs to establish
semantic consistency of different modal data
through preset rules to avoid information
conflicts and ensure fusion effects.

3.2 Decision-Making
Breaking through the limitations of the
traditional linear paradigm of
"perception-planning-execution", it adopts a "big
brain-small brain" collaborative architecture to
improve generalization and response speed in
dynamic scenes:
(1) Planning Layer (Brain)
As the core of decision-making, it undertakes
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high-level planning and overall behavior
decision-making tasks, supported by preset
logical algorithms and vision-mechanical
collaborative models. During operation, it first
integrates external environment description,
visual input, spatial map, human instructions,
and the robot's own state information; then, with
the help of preset logical reasoning and task
decomposition rules, it decomposes complex
high-level goals into executable low-level action
plans; at the same time, it dynamically adjusts
the execution strategy by continuously updating
environmental perception information to adapt to
environmental changes and avoid the limitations
of traditional fixed rules.
(2) Skill Layer (cerebellum)
Connecting decision-making planning and
physical execution, it realizes the accurate
implementation and optimization of skills
through three types of traditional technologies:
Teaching and Reproduction Technology: The
current mainstream implementation path,
adopting the "teaching data collection + offline
strategy solidification" model, including
trajectory reproduction and multi-modal
instruction mapping, providing a stable initial
action plan for robots and laying the foundation
for subsequent optimization.
Real-time Adjustment Technology: Through
real-time interaction between the robot and the
environment, dynamically optimize the action
strategy based on preset feedback rules, focusing
on skill adaptation and precision improvement,
solving the problem of weak adaptability of
traditional fixed strategies.
Traditional Control Technology: Embedded in
the skill library in the form of "primitive skills"
to ensure robustness in high-risk scenes. For
example, fuzzy logic control adjusts clamping
force through tactile feedback, model predictive
control optimizes motion trajectory in real time,
impedance control ensures the safety of
human-robot collaboration, and industrial-grade
PID control realizes stable positioning of
structured tasks, providing deterministic support
for overall action execution.

3.3 Action
As a key bridge between decision-making and
physical execution, it undertakes the
responsibility of converting high-level strategies
into specific operations, directly affecting task
execution efficiency and accuracy. Core
technologies focus on path planning and motion

control.
3.3.1 Path planning technology
The core goal is to plan the optimal route from
the current position to the target position, which
needs to take into account obstacle avoidance,
dynamic environment adaptation, and robot
kinematic constraints:
3.3.2 Environment modeling
Construct a map model that accurately reflects
the real environment. Mainstream types include
grid maps, topological maps, and feature maps.
3.3.3 Search algorithms
Traditional optimization algorithms are
dominant to improve dynamic adaptability, such
as A* algorithm (suitable for path search in static
scenes), D* Lite algorithm (processing path
updates in dynamic environments), and genetic
algorithm, solving the problem of weak
adaptability of traditional fixed paths.
3.3.4 Multi-robot collaboration
Divided into centralized and distributed types.
Centralized planning achieves global
optimization through a central control unit but
has weak scalability; distributed coordination
relies on information interaction between robots
for autonomous coordination, with high
scalability and robustness, suitable for
large-scale multi-robot systems.

3.4 Feedback
As a key link connecting perception,
decision-making, and action, it supports
closed-loop control, dynamic environment
adaptation, and system optimization, directly
affecting task precision and robustness.
3.4.1 Model-Free adaptive control technology
Suitable for scenes where accurate modeling is
difficult or the environment changes frequently.
It does not require the establishment of an
accurate mathematical model and realizes
system adaptive adjustment through preset data
processing rules. Core paths include action
optimization based on trial-and-error correction,
fuzzy control, and decision optimization based
on statistical laws, greatly improving the robot's
environmental adaptability and operational
flexibility.
3.4.2 Model-based feedback control technology
Based on the premise of establishing accurate
mathematical models of the robot and the
environment, it ensures execution precision
through two methods: one is
impedance-admittance control, which
dynamically adjusts control parameters to adapt
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to changes in environmental stiffness; the other
is model predictive control, which carries out
feedforward optimization combined with the
system dynamics model, predicts the future
trajectory first, and then adjusts in real time
according to state differences to ensure efficient
and accurate operation.
3.4.3 Virtual-real fusion dynamic adjustment
technology
Integrate virtual and real data to optimize control
strategies. Core paths include dynamic
adjustment driven by multi-source data, AR and
digital twin technology, and closed-loop
feedback between simulation and physical
operation, enabling stable operation of
closed-loop control in complex environments.

3.5 Learning
Focusing on incremental optimization based on
data accumulation, it is the key for robots to
achieve long-term adaptation and performance
improvement:
This technology aims to solve two major
challenges of traditional systems: "difficulty in
updating fixed strategies" and "slow adaptation
to new scenes". Through real-time interaction
between the robot and the environment, it
continuously accumulates operational data and
corrects action parameters, so that the
optimization ability comes from the system's
own operational experience rather than relying
on external algorithm injection. Finally, the robot
has continuous adaptability in dynamic
environments, gradually optimizing the
execution effect of new tasks and new scenes,
providing support for long-term stable operation.

4. Current Challenges of Embodied
Intelligent Robots
Core challenges focus on four aspects, directly
affecting their large-scale application and
high-quality development:

4.1 Lack of Standardization and Data
Barriers
There is no unified technical standard or general
development platform. Non-standard hardware
interfaces and communication protocols lead to
poor compatibility between devices from
different manufacturers, making it difficult to
collaborate; the high cost of dynamic interaction
data collection, inconsistent data formats among
enterprises form "data silos", and the lack of
sharing mechanisms further exacerbates data

scarcity, restricting the cross-scene
generalization ability of technology.

4.2 Dependence on Core Components and
Poor Software-Hardware Collaboration
Key components such as high-end graphics
processing units and precision sensors have long
been imported, which not only affects supply
chain security but also limits independent
industrial innovation; the decision-making
system and motion control system adopt
independent chip architectures, which are prone
to communication delays. In complex working
conditions such as industrial assembly and
dynamic services, this will reduce the precision
and stability of task execution.

4.3 Talent Shortage and Insufficient Scene
Opening
Multi-disciplinary talents integrating AI,
mechanical engineering, and control science are
needed, but the education system is disconnected
from industrial needs, resulting in lagging talent
supply; the connection between R&D and
application ends is not smooth, and public
testing platforms are scarce. A large number of
products remain in the laboratory stage, making
it difficult to obtain real-scene data for iterative
optimization.

4.4 Ambiguous Responsibility and Privacy
Risks
There is a risk of leakage of private data
collected during robot interaction, and the
regulatory and protection system is not perfect;
when accidents are caused by the autonomous
decision-making of intelligent agents, there is no
clear legal basis for the division of
responsibilities among developers, operators,
and users, leading to difficulties in
accountability.

5. Future Outlook of Embodied Intelligent
Robots
Breakthroughs around five directions to promote
in-depth integration of technology and industry:

5.1 Technological Innovation Promotes
Implementation
The coupling of multi-modal large models and
world models promotes the upgrade of embodied
intelligence from "single-task" to "general
intelligence"; hardware breakthroughs such as
bionic muscles and flexible sensors reduce
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manufacturing costs, laying the foundation for
large-scale commercialization.

5.2 Industrial Ecosystem Collaboration
Policies promote standardization construction.
Beijing, Zhejiang, and other places have piloted
"unified hardware interfaces and standard data
formats", and the first national-level
development platform is expected to be launched
in 2026; the industrial chain collaborates to
tackle key problems, promoting robots to
upgrade from "single-function" to "scene
integration".

5.3 Full-Scene Application Penetration
In the industrial field, Tesla Optimus-like
human-robot collaboration models are gradually
promoted, and the global collaboration
penetration rate in smart factories may exceed
40% by 2030; in the service field, robots enter
inclusive scenes such as elderly care and
education.

5.4 Improvement of Policies and Ethics
The Regulations on the Safety Management of
Embodied Intelligence will be introduced to
clarify the responsibility division and the
"algorithm transparency + emergency fusing"
mechanism; Beijing and Shanghai have piloted
human-robot collaboration safety certification to
balance technological innovation and social
acceptance.

5.5 Human-Robot Symbiosis
With "human decision-making + machine
execution" as the core, a new production
relationship of "technology empowerment and
human leadership" will be formed to achieve
complementary win-win results between humans
and machines.

6. Conclusion
As an innovative product integrating
multi-disciplinary technologies, the development
history of embodied intelligent robots has
witnessed breakthroughs from theoretical
germination to technical landing. The
"perception-decision-action-feedback-learning"
core technical system has built its ability to
autonomously adapt to dynamic environments,
while challenges such as lack of standardization
and dependence on core components have
clarified the key obstacles to industrial
advancement. From technological innovation

driving large-scale commercialization, to the
industrial ecosystem moving towards
collaboration, and then to full-scene application
penetration and improvement of the policy and
ethical system, embodied intelligent robots are
moving towards the ultimate goal of
"human-robot symbiosis". They not only provide
intelligent solutions for fields such as industrial
automation and people's livelihood services but
also reshape the new production relationship of
"technology empowerment and human
leadership".
Through systematic analysis of the origin,
technology, challenges, and outlook of embodied
intelligent robots, this research provides
multi-dimensional references for related fields.
In the future, it is necessary to continuously
focus on core technology research to break
industrial bottlenecks, accelerate standardization
construction to break collaboration barriers, and
strengthen talent training and scene opening to
promote in-depth alignment between
technological innovation and social needs. It is
believed that with the deepening of policy
support and the collaborative upgrading of the
industrial chain, embodied intelligent robots will
occupy an important position in global
technological competition and inject lasting
impetus into the sustainable development of an
intelligent society.
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