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Abstract: The multi-source and explosive
growth of medical big data presents a core
challenge to achieving cross-institutional
collaborative modeling while ensuring
privacy and security in the context of medical
intelligence. Federated Learning (FL) enables
collaborative training without sharing raw
data, Edge Computing (EC) improves model
responsiveness and energy efficiency through
near-source computation, and Differential
Privacy (DP) provides quantifiable privacy
protection for model updates. The integration
of FL, EC, and DP offers a new system
framework and research direction for the
secure collaboration of medical big data. This
paper systematically reviews the recent
research progress on the integration of FL,
EC, and DP in medical scenarios, outlines
typical architectures, privacy mechanisms,
and optimization strategies, and compares the
trade-offs among model performance, privacy
assurance, and resource overhead in different
schemes. This study proposes a
three-dimensional evaluation framework:
"Performance-Privacy-Resource," and
discusses key issues such as heterogeneous
data distribution, end-edge-cloud
collaboration, and privacy-performance
co-optimization. The research aims to provide
a systematic reference and future research
directions for privacy preservation and
distributed intelligent collaboration in
medical big data scenarios.
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1. Introduction

1.1 Research Background
In recent years, massive amounts of medical data
have been generated from electronic health
records (EHRs), medical imaging, genomic
sequencing, and wearable devices, leading to

high-dimensional, heterogeneous, and
high-growth characteristics, reaching a massive
scale. While this vast amount of data brings
opportunities for precision medicine and smart
healthcare services, it also imposes higher
demands on data management and privacy
protection. The Chinese government has listed
healthcare big data as a national strategic
resource and explicitly proposed to promote data
development and utilization, prioritizing security
and adhering to the principle of privacy
protection." However, the "data silo"
phenomenon is still prevalent in China's medical
industry, where data from hospitals, research
institutions, and community health centers is
fragmented. Moreover, centralized storage and
training are associated with a high risk of
privacy leakage. In this context, achieving
multi-institutional collaborative modeling and
knowledge sharing while protecting individual
privacy has become a critical issue that medical
informatization urgently needs to address.
The emergence of Federated Learning (FL) and
Edge Computing (EC) offers a new technical
paradigm to address this problem. FL enables
collaborative model training through distributed
parameter aggregation without sharing raw data.
EC provides computing capabilities at the edge,
close to the data source, effectively reducing
communication latency and bandwidth overhead.
When combined with privacy-enhancing
mechanisms such as Differential Privacy (DP), it
can prevent data inversion and inference attacks
while ensuring model utility and balancing
performance. Therefore, exploring the
integration path of FL, EC, and DP holds
significant theoretical and practical importance
for realizing privacy preservation and
cross-institutional collaboration of medical big
data.

1.2 Literature Review
1.2.1 Domestic research status
In recent years, domestic scholars have
conducted extensive research on combining
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Federated Learning (FL), Edge Computing (EC),
and Differential Privacy (DP) to achieve privacy
preservation for medical big data. Research
focuses on protocol design, hierarchical
architectures, and privacy-enhancing
mechanisms. Overall, existing work mainly
follows three lines: one focuses on privacy
preservation protocols and lightweight
implementations in edge environments (FL+EC);
another focuses on combining FL and DP to
achieve provable privacy guarantees (FL+DP);
in addition, research has begun to explore
comprehensive frameworks that systematically
integrate all three (FL+EC+DP).
Research on FL + EC
In terms of privacy protocol design, some
studies have proposed lightweight schemes
based on secret sharing and masking to protect
gradient information and enhance robustness
against device dropout and collusion attacks. For
example, Liu Dong et al. proposed a protocol
based on shared secrets and weight masking,
designed to resist device dropout and collusion
attacks in an Edge Computing environment [1].
Similarly, Wang Ruijin et al. proposed the
PPFLEC scheme for the Internet of Medical
Things (IoMT), which also uses secret sharing
technology to protect gradient information and
ensures transmission integrity through digital
signature algorithms. This scheme effectively
improved training efficiency in the smart
medical edge environment, with comparative
validation showing it was 40% faster than a
specific Differential Privacy scheme [2].
Research on FL + DP
In the direction of introducing Differential
Privacy into Federated Learning, Wang
Shengsheng et al. proposed a privacy-preserving
federated learning algorithm for multi-lesion
detection in CT medical images. They
introduced a Differential Privacy mechanism
into the FL framework, specifically for the task
of multi-lesion detection in CT medical images,
by injecting DP noise into local model
parameters and improving the RetinaNet
detector structure. This approach achieved an
mAP of approximately 75% while protecting the
privacy of the original images, effectively
balancing privacy protection, communication
efficiency, and model performance [3].
Research on the Integration of FL + Edge + DP
Domestic scholars have recently begun
exploring comprehensive frameworks that
systematically integrate FL, EC, and DP. Zhang

Xuejun et al. proposed a Differential Privacy
Federated Learning model for RSS fingerprint
indoor localization in an edge computing
environment. This scheme achieved 84.63%
accuracy on the CIFAR-10 dataset and 94.86%
on the Mall dataset, reducing computational and
communication burdens through a lightweight
CNN model and a periodic update strategy.
Although primarily applied to RSS fingerprint
localization, its approach to edge deployment
and privacy enhancement is relevant to medical
scenarios (such as ward localization and health
monitoring) [4]. Dong Shaohua et al. proposed
the ECDPFL framework for Differential Privacy
protection in Federated Learning for hierarchical
edge computing, which introduces Local
Differential Privacy at both the client and edge
server levels and optimizes the timing of
end-to-edge and edge-to-cloud aggregation. This
scheme demonstrated good classification
performance and convergence speed on datasets
like CIFAR-10 and MNIST (reaching 80.12% on
CIFAR-10 and 92.82% on MNIST), highlighting
the potential of hierarchical differential privacy
strategies in balancing privacy and performance
[5]. The research by Liu Jingyuan et al. is more
targeted, proposing an incentive mechanism for
energy efficiency and privacy preservation in a
Mobile Edge Computing (MEC)-assisted
medical federated learning system. The scheme
reported a clear improvement in accuracy
(+2.89%) on a real medical dataset and provided
loss convergence curves for qualitative analysis.
Regarding privacy, it employed a differential
privacy mechanism with a quantifiable privacy
budget ε, supporting personalized privacy
settings. In terms of resource optimization, it
treated Energy Efficiency (EE) as a core
optimization objective and managed
communication energy consumption through
game-theoretic optimization of transmission
power. This study demonstrates the practical
feasibility of the FL+EC+DP integrated scheme
in healthcare systems [6]. Overall, domestic
research has proposed various practical solutions
at the protocol design, hierarchical aggregation,
and system level. Initially focusing on the
combination of FL+EC or FL+DP technologies,
the research has gradually evolved toward
systematic integration of all three. However,
challenges remain prevalent, including
insufficient empirical validation, incomplete
reporting of multi-dimensional quantitative
indicators, lack of privacy attack testing, and

42 Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 4 No. 1, 2026

http://www.stemmpress.com Copyright @ STEMM Institute Press



inadequate quantification of resource efficiency.
1.2.2 International research status
International research on medical big data
privacy preservation started earlier and has
accumulated rich experience in algorithms,
systems, and application validation. The focus of
international research includes: edge federated
learning frameworks for resource-constrained
devices, adaptive mechanisms for differential
privacy, and the application of cryptographic
methods such as homomorphic encryption or
secure multi-party computation in federated
scenarios. Overall, international research has
followed three main lines: one focusing on
federated learning optimization in edge
environments (FL+EC); another focusing on
combining FL and DP to achieve provable
privacy guarantees (FL+DP); and recently, the
comprehensive framework systematically
integrating all three (FL+EC+DP) has become a
research hotspot.
Research on FL + EC
In terms of edge-based federated learning,
Aminifar et al. proposed an edge federated
learning framework for resource-constrained
mobile health systems, considering the
computational and bandwidth limitations of IoT
devices. They validated it using data from
wearable devices for epilepsy monitoring,
demonstrating the feasibility of edge
collaborative training while preserving privacy.
The scheme reduces communication frequency
with the cloud through local aggregation at the
edge server. However, its privacy protection
mainly relies on data localization and lacks
quantifiable privacy guarantees [7].
Research on FL + DP
International research has accumulated
considerable empirical experience in medical
imaging and diagnostic tasks by integrating
Differential Privacy with Federated Learning.
Shukla et al. reported in Scientific Reports on a
Federated Learning + Differential Privacy model
for breast cancer diagnosis, using the Wisconsin
Breast Cancer Diagnostic dataset and injecting
DP noise into the FL framework. At a privacy
budget of ε=1.9, the combined FL+DP model
achieved an accuracy of 96.1%, nearly
comparable to the model without privacy
constraints, while effectively resisting inference
attacks on patient data. This demonstrated the
feasibility of FL+DP in multi-institutional
medical collaborative modeling [8]. The
framework proposed by AlSalman et al. further

combines techniques such as homomorphic
encryption to achieve high-accuracy diagnosis in
cross-institutional collaboration, significantly
improving accuracy and meeting clinical
real-time requirements while ensuring privacy
[9].
Research on the Integration of FL + Edge + DP
Systematic integration has become a research
hotspot internationally. Rauniyar et al., in their
review, systematically summarized the latest
progress of FL in medical applications, pointing
out that FL can achieve high accuracy (e.g., Dice
coefficient 0.85+ for cancer diagnosis) and
improve generalization through
multi-institutional collaboration, while EC
reduces latency and improves response time.
Regarding privacy preservation, they detailed
how DP provides quantifiable privacy protection
(ε budget) and combines it with cryptography
(secret sharing) to enhance security, resist
collusion, and use data localization to avoid
sharing raw data. This review provides
comprehensive theoretical guidance for the
application of the FL+EC+DP integrated
technology in the medical field [10].
Overall, international research provides more
methodological support for algorithm
optimization and system implementation. These
studies have been validated on real medical
datasets and provided quantifiable performance,
privacy, and resource metrics, offering important
theoretical and practical foundations for medical
big data privacy preservation. However, they
still face the challenge of achieving an
acceptable compromise between ensuring
privacy, controlling resource overhead, and
maintaining model performance in
heterogeneous medical environments, with no
unified solution yet. Integrated schemes also
generally lack sufficient empirical testing against
privacy attacks [11].

1.3 Specific Research Objectives
This paper aims to systematically explore the
integrated application of FL, EC, and DP in
medical big data privacy preservation. By
constructing a "Performance-Privacy-Resource"
three-dimensional evaluation framework, we
compare and assess the advantages and
disadvantages of different technical schemes. We
summarize the core challenges of existing
research and propose feasible optimization paths
for medical scenarios, providing theoretical
guidance and practical recommendations for the
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construction of secure, efficient, and scalable
distributed medical intelligence systems [12].

2. Research Methodology
This chapter systematically elaborates on the
overall design and methodological framework of
this research, including the research content,
approach, technical route, literature retrieval,
and quality control methods. To ensure the
scientific rigor, objectivity, and verifiability of
the research results, the methodology follows the
principles of
"Systematicity-Objectivity-Reproducibility,"
combining systematic review and comparative
analysis methods [13].

2.1 Research Content
This study employs a Systematic Review
method, combined with Inductive Analysis and
Comparative Analysis. The specific approach is
as follows:
2.1.1 Systematic Literature Retrieval and
Screening
Keyword Determination: Core Chinese and
English keywords and their synonyms are
selected, such as "Federated Learning," "Edge
Computing," "Differential Privacy," and
"Medical Big Data".
Database Selection: Including CNKI, Wanfang,
IEEE Xplore, ScienceDirect, SpringerLink,
PubMed, etc.
Retrieval Strategy: Boolean logic is used to
combine keywords, limiting the time range
(2017-2025),and supplementing relevant
literature through "citation tracking".
2.1.2 Technical Path and Scheme Extraction
Core technical elements (FL type, edge
deployment method, privacy mechanism, etc.)
are extracted from each document to construct a
classification system (FL+Edge / FL+DP /
FL+Edge+DP), identifying architectural
commonalities and differences.
2.1.3 Evaluation Metrics and Comparative
Dimensions
Performance Metrics: Model Accuracy, Recall,
F1-score, Convergence Epochs.
Privacy Metrics: Differential Privacy budget ε,
Noise magnitude δ, Privacy leakage probability,
Anti-attack performance.
Resource Metrics: Communication rounds,
Computational latency, Energy consumption,
Bandwidth utilization.

3. Research Results

Based on the systematic retrieval and screening
of relevant high-quality papers (2017–2025), this
chapter first conducts an overall literature
statistics and trend analysis. Then, based on the
"Performance-Privacy-Resource"
three-dimensional evaluation framework, an
in-depth comparative analysis of the three
mainstream technology combinations (FL+EC,
FL+DP, FL+EC+DP) is performed, and core
comprehensive evaluations and findings are
extracted.

3.1 Literature Statistics
Statistical analysis of the final included papers
shows that the integration of all three
(FL+EC+DP) accounts for the highest
proportion (22.6%), indicating that this direction
has become a current research hotspot. Research
on FL+DP (15.1%) and FL+EC (11.3%) also
accounts for a considerable proportion, with the
remainder being extended combinations
including blockchain, homomorphic encryption,
and other technologies.
Regarding the completeness of data reporting,
the analysis found that:
A majority of the papers (66.0%) reported
parseable performance metrics (e.g., accuracy,
mAP);
Over half of the papers (52.8%) provided
privacy parameters (e.g., Differential Privacy
budget ε);
A smaller portion of papers (28.3%) reported
resource metrics such as latency, communication
overhead, or energy consumption;
Only a limited number of papers (15.1%)
simultaneously provided complete quantitative
data for all three categories: performance,
privacy, and resources.

3.2 Comparative Analysis Based on the
Three-Dimensional Framework
3.2.1 FL + EC analysis
The core of this type of scheme is to empower
Federated Learning with Edge Computing to
achieve near-data processing.
Performance Dimension:
The advantage is that Edge Computing can
significantly reduce communication latency and
improve system response speed, performing well
in real-time medical applications (such as remote
monitoring). The disadvantage is that the
computational limitations of edge devices
restrict model complexity, and the problem of
data heterogeneity (Non-IID) is prominent, often
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leading to slower model convergence or
accuracy fluctuations. However, most papers do
not quantitatively report the convergence speed.
Privacy Dimension
The advantage is that "data non-expatriation"
provides basic privacy protection, reducing the
risk of centralized data leakage. The
disadvantage is the lack of quantifiable privacy
assurance; model gradients still face leakage
risks during transmission, and most schemes
have not been validated to resist advanced
inference attacks.
Resource Dimension
The advantage is that by finely tuning the
privacy budget ε, most schemes can maintain
high model accuracy (e.g., >96%) even after
introducing noise. The disadvantage is that
Differential Privacy inevitably leads to a loss of
utility, and model accuracy and convergence can
significantly decrease, especially when the ε
value is set too small or the data dimension is
high.
3.2.2 FL + DP analysis
The core of this type of scheme is to provide
provable privacy assurance for Federated
Learning through Differential Privacy.
Performance Dimensions
The advantage is that by finely tuning the
privacy budget ε, most schemes can maintain
high model accuracy (e.g., >96%) even after
introducing noise. The disadvantage is that
Differential Privacy inevitably leads to a loss of
utility, and model accuracy and convergence can
significantly decrease, especially when the ε
value is set too small or the data dimension is
high.
Privacy Dimension
The advantage is that it provides quantifiable
and provable privacy protection (ε-DP), which
can effectively resist attacks such as membership
inference and gradient leakage, making it one of
the current gold standards for privacy
preservation. The disadvantage is that pure DP
cannot defend against collusion attacks, and
most studies lack empirical testing in actual
attack scenarios.
Resource Dimensions
The advantage is that the computational
overhead of the Differential Privacy mechanism
itself is relatively small, making it easy to deploy
on resource-constrained devices. The
disadvantage is that the addition of noise may
slow down model convergence, indirectly
increasing the total communication rounds and

resource consumption.
3.2.3 FL+EC+DP scheme analysis
This type of scheme is a system-level integration
of the former two, aiming to coordinate their
respective advantages to achieve global
optimization of privacy, performance, and
resources.
Performance Dimensions
The advantage is that Edge Computing ensures
response speed, and hierarchical/adaptive DP
techniques reduce the impact of noise on overall
model performance, showing performance levels
close to non-privacy-preserving schemes in
many studies (e.g., >92% on CIFAR-10). The
disadvantage is the high system complexity,
requiring fine-grained coordination and
optimization across multiple layers.
Privacy Dimension
The advantage is that it builds a defense-in-depth
system, possessing both the quantifiable
guarantee of DP and the ability to deploy hybrid
mechanisms (e.g., DP + Secret Sharing) by
leveraging the distributed nature of the edge,
resulting in the highest level of security. The
disadvantage is the high implementation
complexity and the continued lack of sufficient
empirical attack testing.
Resource Dimensions
The advantage is that Edge Computing
effectively reduces the communication overhead
of the core network, and the computational
lightness of DP makes it easy to integrate into
end devices. The disadvantage is that complex
privacy mechanisms (such as those combined
with cryptographic methods) may introduce
additional computational and communication
burdens at the edge layer, requiring delicate
design for balance.

3.3 Comprehensive Comparison under the
Three-Dimensional Framework
Based on the above analysis, this study
qualitatively assesses the comprehensive
performance of the three technical
schemes—FL+EC, FL+DP, and
FL+EC+DP—across the three dimensions of
performance, privacy, and resources. The results
are summarized in Table 1. This table clearly
shows the comprehensive evaluation and core
trade-offs of different schemes.

3.4 Core Research Findings are as follows
Significant Performance-Privacy Trade-off
Exists: As shown in Table 1, the FL+DP scheme
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sacrifices some performance for a high level of
privacy protection. The Differential Privacy
budget ε is a key regulatory metric and needs to
be dynamically adjusted based on the sensitivity
of the clinical scenario.
Complex Privacy-Resource Trade-off: Strong
privacy mechanisms alone (such as
homomorphic encryption) can provide a high
level of security but come with huge
computational and communication overheads.
Therefore, hybrid privacy mechanisms, as
represented by the FL+EC+DP scheme, become
the preferred future direction.
Performance-Resource Trade-off can be
mitigated by architectural optimization: As
shown in Table 1, the FL+EC scheme effectively

supports medium-level performance
requirements with its "High" resource efficiency.
Further combination with strategies such as
model compression and selective parameter
updates can further alleviate the performance
bottleneck caused by resource constraints on
edge devices.
Assessment Blind Spot: However, most current
literature suffers from insufficient quantification
of the resource dimension and lacks empirical
testing against privacy attacks. This leads to
uncertainty regarding the actual protection
capabilities and true resource consumption of
many schemes, posing challenges for scheme
selection and final deployment, as illustrated in
Table 1.

Table 1. Comprehensive Comparison of Different Technical Schemes under the
Three-Dimensional Evaluation Framework

Technical Scheme Performance Privacy Resource Applicable Scenario
FL+EC Medium Low High Medical applications with low privacy

requirements and focus on real-time response (e.g.,
remote monitoring)

FL+DP Medium High Medium Medical applications with high privacy
requirements and acceptable performance loss
(e.g., multi-institutional collaborative diagnosis)

FL+EC+DP High High Medium Medical applications with high requirements for
privacy, performance, and resources (e.g., smart
hospitals, cross-institutional collaboration)

4. Discussion
Based on the systematic review of 53 related
papers and the comparative analysis under the
"Performance-Privacy-Resource"
three-dimensional framework, this section
further discusses the key challenges, technical
bottlenecks, and future research directions for
the integrated FL, Edge, and DP schemes in the
medical big data scenario.

4.1 Key Challenges and Future
Countermeasures
4.1.1 Heterogeneous data distribution and model
convergence
Medical data exhibits significant heterogeneity;
data distribution, quality, and volume may vary
greatly among different medical institutions.
This heterogeneity can lead to decreased model
convergence speed, reduced accuracy, and even
model divergence in Federated Learning.
Although existing research has proposed some
countermeasures (such as improved algorithms
like FedProx and FedMA), their effectiveness in
real medical scenarios requires further
validation.

Future Directions:
Develop more robust aggregation algorithms that
can adaptively adjust the weights of different
participants to mitigate the negative impact of
heterogeneous data on model convergence.
Introduce Personalized Federated Learning (PFL)
schemes, allowing different medical institutions
to fine-tune more suitable local models based on
their own data characteristics, while sharing
global knowledge.
Explore the combination of Meta-Learning and
Federated Learning to rapidly adapt to new
medical tasks with different data distributions
using cross-domain knowledge.
4.1.2 End-Edge-Cloud collaboration and
resource optimization in the FL+Edge+DP
In the FL+Edge+DP scheme, how to reasonably
allocate computing tasks, optimize
communication overhead, and manage energy
consumption across the end-edge-cloud
three-tier architecture is a complex systems
engineering problem. Existing research often
focuses on optimization at a single layer, lacking
a global perspective and dynamic scheduling for
the entire system.
Future Directions:
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Develop a co-optimization framework for
end-edge-cloud that comprehensively considers
the allocation of computation, communication,
and storage resources, using methods like
reinforcement learning or game theory to
achieve dynamic optimization of task
assignment.
Explore the differentiated division of labor
between edge intelligence and cloud intelligence,
with the edge layer performing lightweight
inference, data preprocessing, and preliminary
aggregation, and the cloud layer being
responsible for complex model training, global
optimization, and long-term knowledge storage.
Deeply research the application of techniques
such as model compression and knowledge
distillation in edge federated learning to adapt to
resource-constrained devices.
4.1.3 Privacy-performance co-optimization
The core challenge faced by the FL+Edge+DP
scheme is how to minimize the impact on model
performance while ensuring the strength of
privacy protection. A fixed privacy budget ε is
difficult to adapt to dynamic training processes
and changing medical scenarios.:
Develop adaptive Differential Privacy
mechanisms that dynamically adjust the noise
level based on data sensitivity, model training
stage (e.g., initial versus convergence), and
real-time privacy requirements.
Explore hybrid privacy mechanisms, employing
different strengths of privacy protection at
different layers (end devices using LDP, edge
using secure aggregation) to achieve a
fine-grained balance between privacy and
efficiency.
Design adaptive privacy budget allocation
strategies that dynamically allocate the privacy
budget based on the contribution of each training
round to model convergence, avoiding waste or
premature exhaustion of the privacy budget.
4.1.4 Privacy attacks and defense
Although existing mechanisms provide strong
theoretical privacy guarantees, they may still
face various privacy attacks in practical
applications. As discussed in Section 3.3, current
research generally lacks empirical testing against
privacy attacks, resulting in an assessment blind
spot regarding the actual protection capabilities
of the schemes.
Future Directions:
Strengthen empirical research on privacy attacks,
systematically testing the success rate of attacks
such as membership inference and gradient

leakage on real or simulated medical datasets,
and establishing standardized benchmark testing
environments.
Develop more robust hybrid defense
mechanisms, for example, combining
Differential Privacy (to provide provable
protection) and Secure Multi-Party Computation
(to resist collusion attacks), or introducing
Trusted Execution Environments (TEE) to
protect critical computation processes.
Explore active detection and response
mechanisms for privacy attacks, using anomaly
behavior analysis to detect potential attacks in
real-time and take mitigation measures.

5. Conclusion and Outlook
This paper systematically reviews the integrated
application of Federated Learning (FL), Edge
Computing (EC), and Differential Privacy (DP)
in medical big data privacy preservation and
collaboration. By constructing the
"Performance-Privacy-Resource"
three-dimensional evaluation framework and
reviewing and comparing 53 core papers, this
study clarifies the characteristics, advantages,
and limitations of the three technical schemes:
FL+EC, FL+DP, and FL+EC+DP. The main
conclusions are as follows.
Technological Integration is an Inevitable Trend:
Standalone FL technology struggles to meet the
complex demands for privacy, efficiency, and
performance in medical scenarios. Deep
integration with EC and DP has become the
critical technical path for building the next
generation of medical collaborative intelligence
systems.
Trade-off is the Core Issue: As revealed in
Chapter 3, a profound trade-off exists among
performance, privacy, and resources. Future
technical optimization requires a focus on the
synergy and compromise among these three,
rather than isolated breakthroughs.
Evaluation System Needs Improvement: Current
research suffers from notable deficiencies in the
quantitative evaluation of resource overhead and
empirical testing of privacy defense.
Establishing a more comprehensive and
standardized evaluation system is a prerequisite
for the technology's practical implementation.
This research suggests that the field will
continue to deepen in the following directions:
on the theoretical level, adaptive and
personalized algorithms will become research
hotspots; on the engineering level, automated
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management and scheduling for end-edge-cloud
collaboration are key; on the practical level,
large-scale deployment and compliance
validation in real medical workflows will be the
ultimate test of value. We hope that the
three-dimensional framework and systematic
analysis proposed in this paper can provide a
clear roadmap for subsequent researchers and
practitioners, jointly advancing medical
intelligence under privacy protection towards
maturity.
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