
An Examination of Information Systems Development Based on
the Tractatus Logico-Philosophicus

Yan Zhou, Zhentao Liu, Cheng Tang, Danlun Yang, Hengxi Mao, Yu Yang, Chunbo Wu
AVICAS Generic Technology Co., Ltd, Yangzhou, Jiangsu, China

Abstract: To address the disconnect between
practical business scenarios and digital
transformation objectives and existing
information systems, this paper adopts
Ludwig Wittgenstein's "Tractatus Logico-
Philosophicus" as a theoretical framework for
in-depth analysis of information system
development. First, drawing on "Image
Theory," it establishes analogies between data
models and logical representations of the real
world, emphasizing that the structural
integrity of Entity-Relationship (ER)
diagrams is crucial for maintaining business
fidelity. This establishes the ontological
foundation for data governance. Second, the
paper redefines software code
implementation as "executable propositions"
and interface definitions as logical connectors
between functional modules, demonstrating
how formal logic contracts can create clear,
decoupled system architectures. Building on
Wittgenstein's assertion that "the boundaries
of language are the boundaries of the world,"
it reveals the epistemological limitations of
information systems in encompassing
business evolution and system objectives.
Finally, aligning with Wittgenstein's later
philosophical shifts, the paper advocates that
information system development should avoid
blind functional accumulation and data
storage. Instead, it emphasizes logical
coherence, using clear "connection rules" to
enable system operation while embracing
imperfections, transforming systems into
flexible, user-friendly tools rather than fragile
"perfect models."

Keywords: Digitization; Information System;
Logic Philosophy; Data Model

1. Introduction: From Abstract Philosophy to
Concrete Engineering Practice
In the wave of digital transformation, IT
development teams are tasked with transforming
complex business realities into precise,

automated formalized systems. This process is
commonly understood as technical integration or
process implementation. In digital practices, the
standard approach typically follows these steps:
first establishing business systems, tools, or data
middle platforms, then advancing system
integration, and finally implementing data
governance with unified standards, single-source
data, and end-to-end traceability. The core
challenges we face during this development
process primarily include the following two
aspects:
(1) How to establish a seamless and
unambiguous connection between highly
abstract business intentions and rigorous formal
implementation in today's rapidly evolving
landscape. This necessitates transcending purely
technical domains and drawing wisdom from
deeper philosophical logic.
(2) With increasingly comprehensive system
functionalities and data, collaboration may not
necessarily become more efficient; even after
system deployment, frequent reliance on offline
communication, manual reconciliation, and
exceptional access remains.
These two issues highlight that the core
challenge in system development lies not in
whether a system exists, but in whether its
programming language can reliably support the
practical needs of business informatization. In
other words, the essence of building an
informatization system isn't about its interface or
functionality, but whether it possesses a
sufficiently clear, shareable, and computable
structure as a formal language. Sometimes we
lose our way during informatization projects,
mechanically following user feedback and
blindly modifying systems, which often leads to
structural imbalances, chaos, or even system
crashes. This requires the entire informatization
team-especially product managers-to not only
have a deep understanding of business
operations and informatization systems, but also
maintain clear thinking. In today's rapidly
evolving digital landscape, they must also

58 Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 4 No. 1, 2026

http://www.stemmpress.com Copyright @ STEMM Institute Press



abstract philosophical foundations relevant to
informatization development. Interestingly,
Ludwig Wittgenstein, the renowned logician,
studied engineering, and Alan Turing, the father
of computing, was his student. This background
gives Wittgenstein's analytical methods a strong
digital flavor, providing a natural point of
convergence for our exploration.
The core thesis of this paper is to develop a more
profound and practical philosophical framework
for modern information systems, particularly in
business process mapping, architecture design,
data governance, and interface definition. This is
achieved by drawing on Wittgenstein's insightful
analysis of language, logic, and the world in his
"Tractatus Logico-Philosophicus". The study
transforms these abstract philosophical insights
into actionable design principles and governance
strategies for product managers and system
developers, thereby broadening the perspectives
of IT system development teams and offering a
potential philosophical approach to system
design.
The following will systematically explore the
practical value of this philosophical thinking
framework from three aspects: data modeling,
software architecture and system boundary, and
discuss how to construct an information system
with clear logic, reliable engineering and clear
understanding of its own boundary.

2. The Cornerstone of Data World:
Information System as the Logical Image of
the World
This chapter establishes an analogy matrix that
positions Wittgenstein's image theory as the
theoretical foundation for understanding data
modeling and governance. The reliability of an
information system fundamentally depends on
having a logically precise business model and
data model. This model serves as a logical
representation of the real world, where its
fidelity directly determines the feasibility and
usability of all subsequent system applications.

2.1 The Composition of the World: Facts
Rather Than Things
The "Tractatus Logico-Philosophicus" opens
with its seminal assertion: "The world is the sum
of facts, not the sum of things." [1] This
perspective finds direct application to
information systems. The fundamental data types
at the system's core-such as integers or Boolean
values-can be viewed as the building blocks or

atomic units of the digital world. However, these
isolated elements hold no inherent business
significance. They only acquire operational
meaning when interconnected in specific ways to
form structured data records, such as a complete
form or an approval process. It is precisely these
complex facts constructed from atomic data that
systems are designed to process and model.

2.2 Entity-Relationship Model: The
Concretization of Logical Images
Wittgenstein's image theory posits that an image
can represent a fact only if it shares the same
logical schema with that fact.[1] In information
system design, Entity-Relationship (ER)
diagrams serve as concrete tools for this logical
framework.[2] The engineering mandate for
standardized data models directly implements
Wittgenstein's image theory, where the structural
integrity of ER diagrams-through their logical
schema-serves as the sole guarantee of fidelity to
business reality. The three core elements of ER
diagrams-entities, attributes, and relationships-
precisely mirror the logical structure of real-
world business facts:
(1) Entity: represents distinguishable objects in
the real world.
(2) Attributes: Describe the characteristics of an
entity.
(3) Relation: It defines the association between
entities, constituting the factual content itself.
An erroneous ER design, such as incorrect
relational cardinality settings, is equivalent to
constructing a distorted image that deviates from
reality. Philosophically, this implies the
proposition loses its meaning, while in
engineering practice, it inevitably leads to data
redundancy, inconsistency, and integrity errors,
with repair costs being extremely high.

2.3 Data Governance: Maintaining Image
Fidelity
If the ER model represents the logical blueprint
of a system, then data governance serves as the
core mechanism to maintain its clarity and
fidelity. Establishing data access standards,
storage protocols, and classification frameworks
essentially defines the syntactic rules of this
system's formal language. Wittgenstein's
principle that "what can be said must be said
clearly" remains central to data governance. Its
essence lies in ensuring the system's language
remains precise, eliminating logical confusion
caused by ambiguous definitions or unclear

Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 4 No. 1, 2026 59

Copyright @ STEMM Institute Press http://www.stemmpress.com



relationships, and preventing genuine
philosophical issues (business challenges in IT
infrastructure) from being obscured by so-called
"grammatical illusions." By enforcing rigorous
data standards, we guarantee that the logical
framework of information systems consistently

and unambiguously conveys business realities.
The table below summarizes the structural
mapping relationship between the core concepts
of "Tractatus Logico-Philosophicus" and the
components of information systems [1]:

Table 1. Structural Mapping Relationship between "Tractatus Logico-Philosophicus" and
Information Systems

The Core Concept of the Treatise
of Logic and Philosophy

Corresponding Elements and Significance of Information System
Engineering

world Target domain/business scope: The system attempts to describe and automate a
real or expected environment.

sum of facts Data set/data lake: All describable, queryable, and storable status information
within the system.

atomic fact Minimum data unit/scalar type: a basic information unit that cannot be further
decomposed (e.g., Boolean, integer).

picture Entity relationship diagram/data model: a shared logical representation of reality.

logic model System architecture/Interface definition: The internal rules and structures that
govern how facts and propositions are connected.

The Unutterable The ethics, purpose, or incompleteness outside the system boundary: the domain
that the system cannot express or prove in its internal logic.

After establishing the static data image of the
world by comparing Wittgenstein's image theory
and information system, the next chapter will
explore how information system constructs and
executes propositions about these facts through
dynamic software architecture.

3. Executable Logic: Propositional Structure
of Software Architecture and Toolchain
If the data model represents the static image of
the world, then the software architecture,
functionalities, and code constitute the dynamic,
executable propositions about this world. This
chapter aims to analyze the logical essence of
software architecture and the formal foundation
of component interoperability, describing how
code serves as a logical construct to build the
intended world within a digital environment.

3.1 Software Code: Executable Proposition of
Information System
Software code is a special type of executable
proposition that generates outcomes through its
numerical structure. This process embodies
Wittgenstein's key insight: the meaning of a
proposition exists independently of its truth
value. [1] In software, the logical structure of
code (its syntax and design) determines its
meaning-specifically, the effects it aims to
compute or achieve. The execution results-
whether successful or expected-represent the
truth value issue, which may be influenced by
runtime errors, resource limitations, or logical
flaws. Therefore, system architects establish

logical patterns for program propositions
through clear architectural blueprints before
coding. A logically coherent architecture serves
as the fundamental prerequisite for ensuring
software maintainability and comprehensibility.

3.2 Interface Definition: Logical Connectors
Between Components
Information systems are highly dependent on
functional modules composed of multiple
components. This mirrors how logical
propositions (individual components) are
connected through logical operators (e.g., AND,
OR) to form a composite proposition (the entire
system). In functional modules, interfaces
between components serve as logical connectors,
with interface definitions being the core
mechanism for establishing such connections.
Interface protocols provide formalized syntactic
contracts [1] that precisely define components'
inputs, outputs, data types, and operations [1].
They strictly confine component interactions
within formal logic, enabling rigorous
representation of logical structures while treating
internal implementation details as logically
independent elements. This mechanism ensures
modularization and loose coupling of functional
modules, as the validity of component
connections depends solely on abstract interface
protocols rather than specific implementation
languages or platforms.
Although we are committed to building a
logically coherent system, we must recognize
that any complex formal system inherently

60 Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 4 No. 1, 2026

http://www.stemmpress.com Copyright @ STEMM Institute Press



possesses insurmountable limitations. The next
chapter will delve into these logical boundaries.

4. The Inherent Limitations of Information
System: A Warning fromWittgenstein
A mature architectural design must not only
focus on construction methods but also deeply
comprehend the inherent limitations of its
components. This chapter will integrate
Wittgenstein's theory of linguistic boundaries to
reveal the epistemological boundaries that all
complex information systems cannot escape.
Acknowledging these boundaries represents a
crucial step in transitioning from idealistic
fantasies to engineering realism.

4.1 The Boundaries of Language Are the
Boundaries of the World
Wittgenstein's seminal assertion that "the limits
of my language are the limits of my world"
directly reveals the epistemological boundaries
of system modeling. Every business architecture
blueprint of an information system delineates a
linguistic boundary, defining the entire scope of
business operations that can be formally
represented, stored, and processed [1]. Any
business facts not captured by ER diagrams or
defined by interfaces hold no logical significance
for the system. However, real-world business

dynamics are constantly evolving, and these
unanticipated facts ultimately manifest as system
failures, integration issues, or data blind spots.
The consequence is that while system
functionalities continue to expand, they may
become unusable or even entirely unused by
users. This is precisely the root cause of the
inevitable linguistic conflicts between systems
and the real world.

4.2 The Unspoken of the System: Ethics and
Purposes
The "Tractatus Logico-Philosophicus"
categorizes ethical and esthetic domains as
inexpressible. Logical models can only describe
what exists, but cannot articulate why [1].
Similarly, the purpose of an information system-
whether to enhance user efficiency or achieve
commercial value-cannot be captured by ER
diagrams or any form of logic. A logically
perfect and rigorously designed system may still
be ethically disastrous, as its formal structure
(how it works) is logically disconnected from its
purpose (why it exists). Formal analysis must be
guided and constrained by external value
systems.
The following table summarizes the
philosophical implications of the limitations of
formal systems for system construction:

Table 2. Philosophical Implications of Formal System Limitations on System Construction
Philosophical
Theorem/Concept

corresponding phenomena
of system construction

EngineeringManagement and Design
Enlightenment

The Language Limitation of
the Treatise on Logic and
Philosophy

Legacy issues/blind spots
in modeling

The system design must clearly admit its
unspeakable part, i.e. the business rules or
background that are not formalized.

On the Logic of the Logic
Philosophy

Self-reference/recursive
call and deadlock

The complex system synchronization
mechanismmay lead to the paradox that cannot
be solved at the same logical level.

Language is Image
(Wittgenstein's Early Period)

Strict interface and data
governance

Emphasis on clear and unambiguous grammar
rules is the basis of system interoperability.

Language as a Tool
(Wittgenstein's Late Period)

Practicality and Evolution
of Architecture

The system should not be regarded as a static
image of an ideal model, but as a dynamic set
of functions serving a specific function.

After recognizing these profound limitations, we
must shift from pursuing logical perfection of
the ideal to a more pragmatic and resilient
product design to cope with the complexity of
the real world.

5. Conclusion: Product Design and Principles
from Ideal Image to Practical Tool
This chapter aims to converge the previous
philosophical analysis into a set of clear and
operable product design, architecture

principles and governance strategies for
enterprise informatization construction,
which will guide us to build a truly solid,
reliable and valuable information system.

5.1 The Shift from Idealism to Pragmatism in
the System View
Wittgenstein's philosophical thought underwent
a significant transformation. His early ideas
viewed language as a static representation of the
world, pursuing logical purity and perfect

Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 4 No. 1, 2026 61

Copyright @ STEMM Institute Press http://www.stemmpress.com



correspondence. However, his later thoughts
regarded language as a set of tools used for
specific purposes, where meaning lies in their
practical application [3]. This shift advocates a
pragmatic framework: a logically perfect system
may be rigid and fragile, struggling to adapt to
the continuous changes in real-world operations.
We should view information systems as flexible
toolkits whose value lies in their functionality.
Therefore, the construction of information
systems should not focus on the logical purity of
static representations, but rather on the flexibility,
efficiency, and resilience of these tools.
Based on the above analysis, we have distilled
the following core principles for architectural
design and system governance strategies.
5.1.1 Core Architecture Design Principles
(1) Principle 1: Logical isolation of interfaces
strictly adheres to the interface definition
paradigm, ensuring that interoperability between
information system components relies solely on
abstract formal logic contracts (interface
protocols) rather than specific implementation
details. This rigorous logical isolation
maximizes component cohesion and minimizes
coupling, while maintaining the system's logical
transparency.
(2) Principle 2: The Inviolability of Data Atoms.
A system's data model serves as the cornerstone
of its logical fidelity. Its construction must be
grounded in logically indivisible atomic facts.
Any ambiguity in defining these atomic facts
will lead to systemic logical inconsistencies. In
practice, this requires rigorous data governance
to ensure every data point corresponds to a
clearly defined atomic state, thereby
safeguarding the logical fidelity of the
underlying world view.
5.1.2 System Governance Strategies
By adopting an adaptive architecture, the
boundaries of language conflict management
systems are dynamically evolving, as they
inevitably interact with real-world linguistic
challenges. We should implement flexible
development and testing approaches that enable

rapid iteration and evolution guided by
pragmatic principles, rather than rigidly adhering
to an inflexible blueprint. The ultimate goal of
architecture isn't to permanently eliminate
conflicts, but to establish a resilient framework
capable of continuous adaptation and effective
conflict management.

5.2 Summary and Outlook
A profound understanding of formal system
boundaries serves as the conceptual foundation
for building truly robust, reliable, and valuable
enterprise information systems. These
philosophical insights remind us that product
managers of information systems are not merely
logical architects, but also translators bridging
the real and formal worlds, as well as boundary
managers. Our goal is to develop tools that are
logically clear yet pragmatically flexible, rather
than fragile idealized visions.
Looking ahead, with the rise of artificial
intelligence, a new challenge for computational
philosophy and system architecture emerges:
how to more effectively formalize elements like
context and value to bridge the gap between pure
logic and system objectives. This requires
exploring a framework that transcends classical
logic, offering greater descriptive power and
adaptability. This is precisely why we must draw
lessons from the philosophical insights of our
predecessors about the world, and re-examine
the rationale behind information infrastructure
development.

References
[1] Ludwig Wittgenstein. Tractatus Logico-

Philosophicus [M]. Translated by Han Linhe.
Beijing: Commercial Press, 2013.

[2] Wang Shan, Sashi Xuan. Database Systems:
An Introduction [M]. 5th ed. Beijing: Higher
Education Press, 2014.

[3]Han Linhe. Wittgenstein's Philosophical
Journey [M]. Kunming: Yunnan University
Press, 1996.

62 Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 4 No. 1, 2026

http://www.stemmpress.com Copyright @ STEMM Institute Press




