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Abstract: The rapid advancement of deepfake
technology poses unprecedented security
threats to biometric systems. This paper
presents a systematic survey on the latest
progress of deepfake attacks in biometric
authentication. First, we construct a Deepfake
Kill Chain framework that systematically
describes the complete attack chain from
content generation to authentication decision.
Second, we classify and compare defense
methods across four dimensions: content-level,
behavior-level, environment-level, and
generative-end interventions, analyzing their
applicability, failure modes, and trade-offs
between security and usability in different
scenarios. Third, we deeply discuss how
Shortcut Learning leads to reduced
generalization capability of detectors on
unknown variants. Finally, we propose a
hierarchical and collaborative defense
framework and provide concrete deployment
recommendations. This survey aims to
provide a unified cognitive framework for
both academia and industry.
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1. Introduction

1.1 Research Background

Biometric identification technologies have been
widely deployed in critical domains such as
financial payments, e-government services, and
telemedicine. These technologies have become
the primary means of modern identity
authentication due to their efficiency and
convenience. However, with breakthroughs in
deep learning techniques such as Generative
Adversarial Networks (GANs), Variational
Autoencoders (VAE), and diffusion models,
deepfake technology has evolved from
theoretical research to a practical threat.

In recent years, real security incidents caused by
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deepfakes have occurred frequently. In the
financial sector, attackers have successfully
impersonated users using forged faces or voices
to conduct remote payments or account transfers,
causing substantial economic losses. In
government services, forged identity documents
have led to unauthorized access to public
services, affecting numerous users. On social
media platforms, forged videos have been
widely spread, triggering serious information
security incidents. These events clearly
demonstrate  that traditional single-modal
biometric systems struggle to defend against
highly realistic deepfakes.

Although the academic community has produced
substantial deepfake detection research, these
studies exhibit significant fragmentation. Most
research focuses on single modalities (e.g., only
facial or only speech recognition), with
insufficient cross-modal collaborative defense[1];
existing evaluation frameworks fail to uniformly
measure verification performance and spoofing
vulnerability[2]; detection models may rely on
non-essential features for decision-making,
resulting in poor generalization to unknown
variants;  generative-end  prevention  and
detection systems lack organic integration,
forming a fragmented defense ecosystem.

1.2 Core Research Questions

This survey addresses the following core
research questions:

What is the complete attack chain for deepfake
attacks on biometric systems, and what are the
key risk points at each stage?

What categories can existing defense methods be
divided into, and what are their respective
advantages, disadvantages, and application
boundaries?

How can we establish a scientific evaluation
framework to uniformly assess defense method
effectiveness, especially in balancing security
and usability?

How do model trustworthiness issues
(particularly Shortcut Learning) affect real-
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world deployment of defense systems?

How can we construct a hierarchical and
collaborative defense system to counter
increasingly complex and diverse deepfake
attacks?

2. Threat Modeling of Deepfake Attacks

2.1 Deepfake Kill Chain Framework

To systematically understand the threats posed
by deepfakes to biometric systems, we
decompose the attack process into five critical
stages, forming the Deepfake Kill Chain
framework. This framework describes how
attacks evolve from the initial stage to final
authentication deception from the attacker's
perspective.

Forged Content Generation: Attackers use
generative models (GANSs, diffusion models, etc.)
to generate fake biometric features (faces, voice,
etc.) from authentic samples or synthetic data.
The generation quality at this stage directly
affects subsequent attack success rates. High-
quality forged content has higher pass rates but
requires longer generation times; low-quality
forgeries are easier to generate but more easily
detected.

Process Injection: Generated forged content
must be injected into the identity authentication
system workflow. Multiple injection methods
are possible, including direct presentation
(presenting screen or audio playback of forged
content directly to camera or microphone),
transmission replacement (replacing authentic
data during network transmission), or hybrid
attacks (mixing forged content with authentic
content).

Feature Impersonation: Deepfakes attempt to
mimic authentic user biometric features. For
facial recognition systems, this may include
impersonating facial texture, lighting conditions,

head pose, skin texture, etc.; for voice
recognition  systems, this may include
impersonating voice tone, accent, rhythm,

speech rate, etc. The objective at this stage is to
minimize differences from authentic user
features.

Detection Evasion: Modern deepfakes may
employ adversarial techniques to evade known
detection methods, including local perturbations
(making minor modifications to forged content
to evade specific detectors), adaptive attacks
(optimizing against known target system
characteristics), or cross-modal confusion
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(exploiting inconsistencies between different
modalities to create ambiguity).

Authentication Decision Deception: Forged
content passes through feature extraction and
similarity matching authentication procedures,
ultimately bypassing the decision threshold to
cause authentication error. This is the final
attack objective stage; successfully reaching this
stage means the attack has completely
circumvented the defense system.

2.2 Necessary Conditions for Attack Success
Deepfake attack success is not isolated but
depends on an organic combination of multiple
factors. Generation quality determines the
realism of forged content, directly affecting
whether it can pass human inspection; physical
constraints involve the attack presentation
method, directly affecting whether actual system
contact is possible; detection blind spots are
weak points of defense systems, and all defense
methods may have uncovered scenarios; cross-
modal coordination means coordinating multiple
modality  impersonation in  multi-modal
authentication systems, with difficulty increasing
exponentially with modality count; adaptive
capability reflects the attacker's understanding of
target system characteristics, with adaptive
attacks typically being more effective than
generic attacks[3].

3. Classification Survey of Defense Methods

3.1 Content-Level Defense

3.1.1 Image domain feature analysis

Traditional detection methods primarily focus on
forensic traces left by deepfakes in images or
videos. Gragnaniello et al. systematically
compared local descriptors such as LBP (Local
Binary Pattern) and HOG (Histogram of
Oriented Gradients), finding that these features
are somewhat effective for detecting static
presentation attacks (Presentation Attacks) but
have limited support for dynamic deepfakes[4].
This is because generative models better
preserve the coherence of high-frequency
information.

Recent research indicates that deepfakes
typically exhibit specific forensic traces in the
frequency domain. Different generative models
leave different fingerprints in the frequency
space, causing abnormalities in frequency
distribution and spectral gaps. Therefore, hybrid
methods combining spatial and frequency
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domains  demonstrate  superior  detection
performance. However, these methods typically
depend on specific forgery models, with limited
adaptability to new generation methods.

3.1.2 Temporal domain feature analysis

For video deepfakes, temporal consistency is a
critical clue. Due to computational constraints of
generative models, forged videos typically
exhibit incoherent features between frames, such
as facial feature flickering, unnatural head

motion, or unnatural facial expression transitions.

Through optical flow analysis, we can capture
inter-frame motion differences; 3D
Convolutional Neural Networks (3D-CNN) can
simultaneously model spatial and temporal
information; Recurrent Neural Networks (RNN)
can learn temporal sequence dependencies.
These methods are typically more effective than
single-frame analysis for detecting temporal
inconsistencies.

3.1.3 Deep learning methods: evolution and
limitations

From  pre-trained Convolutional = Neural
Networks (CNN) to attention mechanisms, and
then to Transformers, the expressiveness of
deepfake detection models continues to increase.
However, a critical issue is weak cross-domain
generalization. Detection models trained on one
dataset typically suffer significant performance
degradation on other datasets, a phenomenon
known as the "cross-dataset generalization
problem"[4]. The primary reasons include
different data acquisition conditions across
datasets (camera models, lighting conditions,
backgrounds, etc.) and the diversity of deepfake
generation methods causing varied forensic
traces. Consequently, many recent studies have
shifted toward using data augmentation and
transfer learning techniques to improve
generalization performance.

3.2 Behavior-Level Defense

3.2.1 Liveness detection

Liveness detection[5] distinguishes authentic
users from forged content by requiring users to
perform specific genuine behaviors. Primary
methods include reflection analysis (authentic
facial surface reflection patterns differ
fundamentally from 2D forged content), eye
movement detection (requiring users to track
moving objects), blink detection (analyzing
eyelid motion frequency and patterns), head
motion analysis (requiring users to execute
specific head poses), etc.[5]
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Yang et al. introduced temporal sequence
behavior consistency through dynamic lip
movement analysis in speaker authentication,
enhancing recognition capability against
synchronized audio-visual deepfakes[6]. This
work's key insight is that static appearance
features alone can be easily bypassed by highly
realistic deepfakes, while dynamic behavioral
features provide an additional defense layer.
Voice and lip movement coordination involves
physiological constraints that deepfakes struggle
to perfectly impersonate without detection.

3.2.2 Cross-modal behavioral coordination
Authentic user biometric features have intrinsic
coordination relationships with each other.
During speech, voice, lip movement, facial
expression, and head pose should be highly
coordinated. When deepfakes attempt to
impersonate individual modalities, they struggle
to simultaneously impersonate these
coordination relationships across multiple
dimensions. Therefore, detecting cross-modal
inconsistencies becomes an effective defense
strategy.

Specifically, this includes detecting audio-visual
synchronization (whether voice-to-lip-movement
synchronization conforms to physical laws),
facial expression-speech consistency (facial
expression changes during speech should relate
to speech content), and head pose-eye motion
coordination (natural head motion should
accompany corresponding eye movements).
These multi-dimensional consistency checks
substantially increase attack difficulty.

3.3 Environment-Level Defense

3.3.1 Electrical network frequency signal
verification
DeFakePro[7] proposed utilizing FElectrical

Network Frequency (ENF) as an innovative trust
signal[7]. ENF is the power system's frequency
signal, unconsciously recorded through various
physical  pathways (such as  device
electromagnetic interference) during video or
audio recording. Because ENF is determined
globally by regional power systems, attackers
are nearly unable to precisely replicate specific
local ENF characteristics without knowing them
when generating forged content.

This method's advantages include difficulty of
forgery, strong cross-domain robustness (not
dependent on specific biometric feature
characteristics), and complementarity with other
methods (can be combined with content-level
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and behavior-level methods). However, ENF
method limitations include requiring high-
quality  audio  recording  environments,
potentially unsuitable for certain scenarios.

3.3.2 Other physical constraints

Research also explores other environmental
information for defense. Lighting condition
analysis: authentic environment natural lighting
differs significantly from studio lighting in light
direction, color temperature, shadow patterns,
etc.  Background  consistency  analysis:
background replacement or editing during
forgery typically leaves obvious traces such as
unnatural boundaries and color shifts. Noise
characteristic analysis: authentic environmental
noise (background sound, device noise) differs
markedly from artificial noise generated by deep
learning models in time-frequency
characteristics. These physical-level constraints
provide forensic evidence difficult to forge.

3.4 Generative-End Intervention

3.4.1 Adversarial perturbation injection

Dong et al.'s work considers the problem from
an attack-defense adversarial perspective[8].
Rather than passively detecting forgeries, we can
inject adversarial perturbations during the
forgery generation process to weaken quality
from the source. The specific method involves
injecting minor perturbations during generative
model optimization, causing the generated
forged content to remain perceptually realistic to
human observers while degraded for biometric
systems, unable to pass the system similarity
threshold. This "attacker's attacker" perspective
provides a new defense paradigm.

3.4.2 Generation quality control

Another direction involves identifying key
parameters in the generation process to reduce
forgery success probability at the source. This
includes identifying generation parameter
configurations prone to forgery failure, setting
minimum quality thresholds to reject sub-
threshold forgeries, constraining generation
models themselves to limit forgery diversity, etc.
While these measures cannot completely prevent
forgery generation, they substantially increase
attack costs.

and Model

4. Evaluation Framework

Trustworthiness

4.1 EPS Framework
Chingovska et al.'s EPS (Expected Performance
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and Spoofability) framework[2] represents an
important attempt at unified defense method
evaluation. The framework's core insight is that
defense systems must simultaneously consider
verification performance (ability to accept
authentic users) and spoofing vulnerability
(ability to reject attacks). The framework defines
key indicators including APCER (Attack
Presentation  Classification Error Rate -
probability of incorrectly accepting attacks as
authentic users, lower is better), BPCER (Bona
Fide Presentation Classification Error Rate -
probability of rejecting authentic users, lower is
better), and ACER (average of both), etc. Its
value lies in emphasizing the trade-off between
security and usability: a system focusing only on
security while ignoring user experience
(rejecting many authentic users) is as
unacceptable as a system prioritizing usability
while vulnerable to attacks (accepting forged
content).

4.2 Shortcut Learning Issue

4.2.1 Definition and typical manifestations
Shortcut Learning refers to models achieving
superficially high performance by learning non-
essential, spurious correlations. In deepfake
detection, this means models may learn to
depend on dataset-specific forensic traces rather
than  essential  deepfake  characteristics.
According to Sahidullah[9] et al.'s research,
Shortcut Learning in deepfake detection
manifests in four primary forms[9]:

Generative Model-Specific Features: Detectors
learn to identify specific generative model (e.g.,
particular GAN architecture) distinctive traces,
causing substantial performance degradation
when new generative models appear.
Dataset-Specific Features: Models over-adapt to
training dataset-specific characteristics (color
bias, resolution, compression artifacts), with
severe performance degradation when applied to
deepfakes from other sources.

Non-Semantic Feature Dependence: Detectors
depend on pixel-level forensic traces rather than
semantic information; adversarial modification
of these low-level features may cause detection
failure.

Modality Imbalance: In multi-modal detection,
models over-depend on dominant modalities;
when the dominant modality is specifically
optimized by attackers, the entire system fails.
4.2.2 Impact and mitigation strategies

This problem's severity lies in the fact that
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laboratory high performance may not translate to
effective real-world deployment. A detector
achieving 98% accuracy on standard datasets
might only achieve 60% accuracy when
encountering new deepfake generation methods.
This creates a critical trust crisis: we cannot
ensure real deployment defense system
effectiveness.

Existing methods for mitigating Shortcut
Learning include data augmentation (expanding
training data diversity), transfer learning and
domain adaptation (leveraging pre-trained
models and domain adaptation techniques to
improve generalization), adversarial training
(using adversarial examples to enhance model
robustness), multi-task learning (simultaneously
learning related tasks to force learning more
universal features), and explainability analysis
(using feature visualization and gradient analysis
to identify whether models depend on non-
essential features).

5. Multi-Modal Fusion Detection

5.1 Cross-Modal Alignment

Du et al.'s cross-modal alignment and distillation
framework's core idea is that authentic audio-
visual content should be highly aligned in
semantic space while deepfakes often exhibit
misalignment[10]. By separately extracting
visual and audio features, projecting them into
the same semantic space, computing feature
consistency measures, and marking inconsistent
feature pairs as deepfake evidence. This
method's advantage lies in capturing subtle
cross-modal inconsistencies, which are critical
for deepfake recognition.

5.2 Lightweight Multi-Modal Models
Considering computational resource constraints
and real-time requirements in practical
deployment, lightweight joint audio-visual
models embed audio-visual coordination into
single-stream architectures. Compared to dual-
stream architectures, this approach achieves
significant computational reduction, stronger
real-time performance, and more effective multi-
modal interaction. These models can also be
deployed on mobile and embedded devices.

5.3 Hierarchical Fusion and Inconsistency
Detection

Recent research explores hierarchical multi-
modal fusion. These methods perform feature
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fusion at different network depths, considering
both local pixel/spectral features and global
semantic information, explicitly modeling
contradictions and conflicts between modalities.
These contradictions are often key evidence of
deepfakes. Multi-modal inconsistency detection
includes synchronization detection (audio-visual
synchronization degree), semantic consistency
(emotional consistency, content consistency),
and feature conflict recognition.

6. Application Scenario Analysis

6.1 Financial Authentication

In bank transfers and payment authentication
scenarios[11], deepfake threats are most
direct[11]. These scenarios feature high
economic value, multiple biometric channels,
and rapid authentication requirements. Existing
defenses face multiple challenges: attackers can
combine forgeries across multiple modalities;
user expectations for rapid authentication limit
defense method complexity; attackers may
leverage historical data to generate personalized
deepfakes for specific users. Defense strategies
can employ risk-adaptive tiered verification:
low-risk transactions use single features, high-
risk transactions employ multi-factor
authentication.

6.2 E-Government Services

In identity documents and driver's license
verification scenarios[12], identity forgery may
cause crimes with lasting legal consequences[12].
Defense requires establishing historical baseline
and anomaly detection systems, periodically
updating user biometric baselines, detecting
significant deviations from historical baselines,
and initiating human review when suspicious.

6.3 Telemedicine

Telemedicine authentication must ensure patient
privacy, medical safety, and complete audit logs.
Multi-dimensional verification combinations can
be employed: biometric recognition plus
knowledge authentication, real-time monitoring
plus post-event audit, and anomalous behavior
detection.

7. Hierarchical Collaborative Defense
Framework

Based on the preceding analysis, we propose a
hierarchical collaborative attack-defense
framework integrating generative-end prevention,
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content detection, behavioral authentication,
environment verification, risk fusion decision-
making, and feedback learning into six levels of
organic integration.

7.1 Generative-End Prevention Layer
Reducing forged material quality and usability at
the generation stage

7.2 Content Detection Layer
Detecting forgeries by analyzing forensic traces

7.3 Behavioral Authentication Layer
Authenticating through detecting genuine user
behavior and biological constraints

7.4 Environment Verification Layer
Utilizing difficult-to-forge environmental and
physical information

7.5 Risk Fusion and Decision Layer
Integrating all defense layer information for final
authentication decisions

7.6 Feedback and Learning Layer
Learning from false alarms and attacks for
continuous defense improvement

8. Domestic Research Status and Innovation

8.1 Major Achievements

Domestic academia has made important
contributions to deepfake defense. Li
Chunxian[13] et al. examined deepfake threats
from social-institutional perspectives, proposing
governance strategies based on socio-technical
coupling. Ran Lian and Zhang Wei et al.
constructed AIGC deepfake analysis frameworks
using actor-network theory, proposing targeted
governance  strategies  including  virtue
governance, law governance, technology
governance, and public governance.

In detection methods, Yao Wenda[14] et al.
systematically  organized facial deepfake
detection feature space division and evaluation
metrics. Li Junjie et al. focused on video
deepfake detection generalization issues[15].
Zeng Zhiping et al. reviewed deepfake audio
generation and authentication from audio
perspectives. In attack-defense techniques[16],
Wang Li et al. constructed facial deepfake
liveness verification attack frameworks and
unified evaluation systems[17], revealing
vulnerabilities in  commercial  liveness
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verification APIs. Wu Hanyu et al. focused on
anti-forensic adversarial attacks against deepfake
video detection[18]. Mo Yonghua et al.
proposed face anti-spoofing verification systems
based on big data analysis[19].

8.2 Main Innovation Points of This Survey

First systematically describing deepfake threats
from the complete attack chain perspective; (2)
establishing unified classification framework
across content, behavior, environment, and
generative-end dimensions enabling method
comparability; (3) systematically expounding

model trustworthiness issues like Shortcut
Learning with mitigation strategies; (4)
proposing complete defense system from

generative-end prevention to risk fusion; (5)
analyzing defense strategies combining financial,
government, and healthcare scenarios.

9. Open Issues and Future Directions

9.1 Currently Unresolved Issues

Real-time Detection vs. Usability Trade-off:
Current multi-modal fusion methods have high
computational complexity with insufficient real-
time performance on mobile devices;
Generalization to Unknown Attacks:
Continuously emerging generative models and
attack methods make existing detector
effectiveness uncertain on unseen attacks; Cross-
Organization Collaboration Feasibility: Threat
intelligence sharing faces privacy, trade secret,
and legal barriers; Legal and Ethical Framework:
Biometric feature collection and use face
privacy-security balance issues.

9.2 Future Research Directions

Generative model explainability, active defense
strategies, physics-constraint-based defense,
industry standards establishment, and zero-trust
verification paradigms will be important future
research directions.

10. Conclusion

Deepfake technology development poses
unprecedented security challenges to biometric
systems. This survey systematized attack
processes through the Deepfake Kill Chain
framework, classified and compared defense
methods across multiple dimensions, deeply
discussed model trustworthiness issues like
Shortcut Learning, and proposed a hierarchical
collaborative defense architecture. Deepfake
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defense is not merely a technical issue but a
comprehensive problem involving legal, ethical,
and social dimensions. Future research requires
multi-disciplinary and multi-stakeholder
collaborative frameworks.
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