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Abstract: This paper presents a study on the
static characteristics of spherical hybrid
sliding bearings, which is a key structural
component of a roundness tester. The
influence of critical design parameters is
analyzed to provide a theoretical basis for
optimized design. A lubrication mathematical
model based on spherical coordinates was
established, and the Reynolds equation
applicable to spherical bearings was derived.
By incorporating the principle of flow
conservation and a small-hole throttle model,
the oil film pressure distribution was obtained
using a coupled finite difference and
relaxation iteration method. Based on the
established lubrication model, the influence of
oil supply pressure, eccentricity, throttle hole
diameter, and oil film clearance on the bearing
load-carrying capacity was systematically
analyzed, and the corresponding underlying
mechanisms were investigated. The analysis
results indicate that an increase in oil supply
pressure enhances the hydrostatic effect,
thereby improving the bearing load-carrying
capacity. An increase in eccentricity
strengthens the hydrodynamic effect and leads
to a significant improvement in load-bearing
performance. In addition, the throttle hole
diameter exhibits an optimal value that
maximizes load-carrying capacity, which
essentially reflects the matching relationship
between throttling characteristics and return
oil flow resistance. The proposed model and
computational strategy offer effective support
for parameter optimization and preliminary
structural design of precision metrology
bearings, contributing to improved
measurement accuracy and reliability in
advanced manufacturing.
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1. Introduction

Spherical Hybrid Sliding Bearings (SHSBs) have
been widely adopted in aerospace systems,
roundness testers, gyroscopes, and other ultra-
precision instruments owing to their high load
capacity, superior stiffness, low frictional power
loss, and excellent rotational accuracy [1]. As
shown in Figure 1, a typical roundness tester is
composed of SHSBs, a granite column,
hydrostatic guideways, and a precision leveling
and self-aligning worktable, and is utilized for the
measurement of roundness, cylindricity, and
coaxiality of ring-shaped or cylindrical rotating
components.

Figure 1. Roundness Tester System Structure
1-Granite column

2-Gydrostatic guideways

3-Precision leveling and self-aligning worktable
4-Granite base platform

5-SHSBs

In such measurement systems, the measurement
accuracy is significantly improved by the use of
SHSBs. Under the action of pressurized oil
between the convex and concave spherical
surfaces, the spindle is lifted and
hydrodynamically supported, whereby the effects
of surface machining errors, installation
deviations, assembly misalignments, and slight
attitude variations on the rotational accuracy of
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the turntable are effectively mitigated. However,
because spherical surfaces are particularly
difficult to  manufacture, the  bearing
characteristics cannot be obtained experimentally
without substantially increasing development
costs. Thus, numerical and simulation-based
approaches are typically employed during the

design stage to predict the performance of SHSBs.

Although extensive numerical and simulation
studies have been conducted on spherical, gas-
lubricated hydrostatic bearings in recent years,
research on SHSBs remains relatively limited.

In the research field of gas-lubricated spherical
hydrostatic bearings, early studies established
numerical approaches for solving the Reynolds
equation  on  spherical  surfaces. = One
representative method involved the
transformation of the hemispherical surface into a
rectangular plane, and the subsequent substitution
of variables to render the Reynolds equation into
an elliptic partial differential equation (PDE).
This facilitated the calculation of gas-film
pressure  distributions  [2].  Subsequently,
hydrostatic gas-bearing models formulated in
Cartesian, polar, and spherical coordinate
systems were developed, and the corresponding
pressure fields and load-carrying capacities were
obtained by solving the governing partial
differential equations. The influence of
conformality on numerical accuracy and
computational efficiency was systematically
investigated [3]. The advent of numerical
techniques has precipitated the integration of
iterative  algorithms  with  finite-difference
schemes, a development that has facilitated the
attainment of approximate solutions to the
Reynolds equation. This, in turn, has enabled the
execution of parametric studies that investigate
the impact of supply pressure and restrictor
orifice diameter on the bearing load capacity [4].
In order to enhance numerical precision, small-
perturbation theory was amalgamated with
weighted-residual methodologies, including the
Galerkin method. This integration facilitated
meticulous examinations of dynamic coefficients
and their reliance on perturbation frequency,
eccentricity, and structural parameters [5].
Furthermore, the steady-state load capacity and
dynamic characteristics of hemispherical spiral-
groove hybrid gas bearings were investigated,
revealing the influence of groove geometry on
bearing performance [6]. Furthermore, the
cavitation phenomena manifesting in spherical
bearings were contemplated, with concomitant
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analyses of film pressure, elastic deformation,
and load capacity undertaken utilising finite-
element methods [7].

In the research area of SHSBs, early numerical
modelling employed triangular finite elements
with linear interpolation functions to describe the
lubrication film, thereby establishing the
foundation for finite-element analysis of
spherical bearing lubrication problems [8].
Subsequent studies have derived pressure
distributions and fluid-film thickness expressions
for hemispherical shells wunder arbitrary
orientations, including horizontal configurations.
These studies have also proposed modified
formulations for film-thickness calculation [9].
Subsequent incorporation of the centrifugal
effects induced by spherical geometries into
lubrication analyses yielded analytical pressure
solutions through Sommerfeld-type
transformations, thereby providing significant
theoretical underpinnings for the optimisation
and design of spherical bearings [10]. In more
recent studies, dynamic lubrication equations
under laminar-flow conditions have been derived
using small-perturbation methods, and numerical
analyses of spherical bearing operating
characteristics have been performed by unfolding
the bearing surface and establishing analogies
with journal bearing models [11].

This study builds upon the extant literature by
investigating a SHSBs and developing a
numerical lubrication model for its performance
analysis. The hemispherical surface is unfolded
into a rectangular plane, discretised, and solved
using the finite-difference method to obtain the
pressure distribution from the transformed
Reynolds equation. The subsequent evaluation
encompasses the impact of initial film thickness,
supply pressure, and orifice diameter on the
bearing's load capacity and stiffness.

2. Operating Principle and Numerical
Modeling of SHSBs

2.1 Operating Principle

The shaft system of SHSBs comprises a
hydraulic oil supply system, a cooling system,
two hemispherical bearing surfaces, and a spindle,
as illustrated in Figure 2. The bearing is formed
by the mating of a convex and a concave
hemispherical surface. The convex sphere (4)
functions as the bearing rotor and is equipped
with multiple supply orifices, while the concave
sphere (3) serves as the bearing stator and
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features four hydrostatic recesses (5). During
operation, the hydraulic oil supply system (6)
delivers pressurised oil to these recesses, thereby
generating supporting oil films within the four
pockets that provide the bearing load capacity.

— _—

=
\
\
\
\
\

3——N

¢

Figure 2. Structure of SHSBs Shaft System
1-Axis of rotation
2-External throttle
3-Concave hemispere
4-Convex hemisphere
5-0il cavity
6-0il supply system
The operating principle of a hydrostatic bearing
is predicated on the continuous supply of
hydraulic oil at a prescribed pressure through a
throttling device into the bearing recesses. The
throttling element is responsible for regulating
the flow rate and establishing a pressure drop
between the supply line and the recesses. This
enables the formation of a stable and uniformly
distributed pressurised lubricant film within the
bearing clearance. The application of pressurised
oil film results in the complete separation of the
bearing surfaces, thereby preventing direct
mechanical contact and significantly reducing
friction and wear. In the context of steady
operating conditions, the pressure distribution
within  the lubricant film generates a
counterbalancing force that is effective in
resisting external loads, whilst concurrently
providing  high stiffness and damping
characteristics. Consequently, hydrostatic
bearings demonstrate exceptional load-bearing
capabilities, minimal frictional losses, and
superior motion accuracy, rendering them
especially well-suited for precision and ultra-
precision mechanical systems

2.2 Numerical Modeling

The seminal work of Osborne Reynolds on
lubrication theory in 1886 resulted in the
formulation of the generalized Reynolds equation,
as expressed in equation 1. In the spherical
coordinate system, the generalized Reynolds
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equation is transformed into a mathematical
model describing spherical bearings with the
lower hemispherical shell in an arbitrary
configuration [9].
16( h38> 1 8<h38>
T
0 0 0 0

:62.[ o h)

22+ +
T (

)ER 2L

Assuming the lubricant is an incompressible fluid,
it can be demonstrated that the density, denoted
by p, can be eliminated from both sides of the
equation. In circumstances where the flow
velocity is sufficiently low, the lubrication
process may be regarded as steady, and thus all
time-dependent terms may be omitted.
Furthermore, when the bearing is in a horizontal
position, the half-inclination angle is = 90°,
whereby the above equation can be simplified to
the following form:

(" )e=(-0

For computational convenience, equation 2 is

nondimensionalized by introducing =
3600 _ 3600

27 2 0
Substituting these relations into equation 2, the
nondimensional Reynolds equation for a
spherical hydrostatic sliding bearing is obtained
as follows:

(=)0 o
It is evident that the introduction of an eccentric
offset is a consequence of two factors: the
bearing's self-weight and the externally applied
load. This results in a non-uniform oil-film
thickness in all directions. Accordingly, the oil-
film thickness of a hemispherical shell oriented
arbitrarily can be expressed as follows:
=9t ( + )
- ( - ) 4
The bearing is assumed to be in the horizontal
position, as il‘lfustrated in Figure 3.

Figure 3. Spherical Coordinate System
Eccentricity
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Substitution of the following equations into

equation 4 is required: = 90°, 8 = 3;_09, =
3600 _ _
5 T o, T o, T oo -

— 1+ T (5)
3. The Simplified Mathematical

Transformation of Spherical Bearing

3.1 Conformal Transformation

At present, there are two general approaches that
are commonly utilised in order to solve the
Reynolds equation for spherical bearings. The
first method is to solve the equation directly
using the finite-difference method. The second
approach involves the unfolding of the spherical
surface onto a rectangular plane. However, due to
the disparity in spatial curvature between the
sphere and the plane, direct mapping of the
spherical surface onto a plane engenders local
stretching or compression of specific regions.
Consequently, a conformal transformation is
imperative to maintain curvature and ensure
geometric consistency during the mapping
process. Therefore, the following is established:

—— ( /2). 1t follows that =2

+2°

Substituting these relations into equation 3 and
equation 5 yields:
()0 ©
2 2 -]

=1+ O+ = ()

3.2 Mesh Generation
Conditions

3.2.1 Mesh generation
Subsequent to the conformal transformation, the
lubricating-film domain on the original spherical
surface is mapped onto a rectangular plane, as
illustrated in Figure 4. The upper and lower
boundaries correspond to ambient-pressure
boundaries, with the pressure fixed at standard
atmospheric pressure. The left and right
boundaries are generated from the same meridian
of the spherical surface; therefore, periodic
boundary conditions are applied, thereby
ensuring equal pressure values on the two sides.
The total number of grid nodes thus generated is
300 x 150, which equates to 45,000. Of these,
298 x 148 = 44,104 are classified as internal
nodes. Each internal grid node is associated with
an unknown pressure value Pi, j, resulting in one
finite-difference equation per node. Consequently,

and Boundary
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the total number of algebraic equations
constituting the nonlinear equation system to be
solved is 44,104. The relaxation factor employed
is 0.5, and the system is solved using an iterative
relaxation scheme until convergence. This
process yields the pressure field and the

corresponding film-thickness distribution at
each node. The pressure distribution over the
entire load-carrying region of the bearing can
then be obtained from these values.

3.2.2 Boundary conditions

The working mechanism of the SHSBs is the
basis for the following explanation. The upper
and lower ends of the bearing act as discharge
boundaries which are directly connected to the
external environment. Consequently, the pressure
at these boundaries is prescribed as the standard
atmospheric pressure.

Dimensional ( ;, )= (, )= ®)
Dimensionless ( ,®) = ( ,P)=1 (9)
In the unfolded rectangular domain, the left and
right boundaries originate from the same
generatrix of the spherical surface. Accordingly,
periodic boundary conditions are applied to
ensure continuity of pressure across these two

edges.

(P)= @®+2) (10)
The pressure distribution surrounding the
restrictor outlet is specified according to the
mass-conservation condition, which equates the

inflow and outflow through the throttling orifice.

a
A

Ambient pressure boundary
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Figure 4. Meshing and Boundary Conditions

3.3 Iterative Computation of the Finite-
Difference Form of the Reynolds Equation

Equation 6 is a second-order nonlinear partial
differential equation, for which an analytical
solution is extremely difficult to obtain.
Therefore, numerical methods are employed to
approximate the solution to this equation. The
governing equation is first discretised into a
finite-difference form, and the oil-film pressure
distribution is subsequently computed using a
relaxation or successive over-relaxation (SOR)
iterative scheme [12]. The Reynolds equation is
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formulated in the standard form of a second-order
partial differential equation 11:
2 2

From equation 6, expanding and simplifying the
expression yields equation 12.
3 ? 3 ? 2 2 —

7+ ?Jr_? —u—u+3 $$_0(12)
by applying the central difference formula and
substituting equation 13 and 14 to equation 12

into equation 15.
2 2 -1
(,(D)=(]+ cos @+ )

1+ 2

3

(L ®)=(1+ cosdoir+ Z_‘z’)

(o =31+ 2o I (13
(o=ai wsoier 1)
- < (- z)
=) -
( ) ZAQJ (14)
(22) - +(A_)12—2
( 22) - +1+(Ad>;21_2
= +
t (. ) i 7 (15)
() +12 - =1
L)y
After collecting like terms, the following

expression is obtained equation 16:
, =%{A<D2[2 (,@)+0d (@) 4
HADY2 (L, D)=0D (D) ;)

/K 2 A>2(,¢)+A¢2(,¢4

1+ 7 (16)
RS E Y)
+[2(,CD)+I 2A (,CD)] —1,}

2

(zi > A) (,®)+AD? ( ,(D)]

By enforcing the discretized equations at every

node, the dependence of the nodal pressure P;;

on the pressures of the adjacent nodes can be

determined [13] equation 17.
= 4l =+

/

+1
, o T 41,
+ :1{ + (17)

Where , , , , areequation 18
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_ =)
’ (18)
(=)

5

=2(=+ )

The pressures indicated by the superscript
correspond to the previous (uncorrected) iteration
values, whereas the superscript  + / represents
the corrected pressures that are employed in the
subsequent iteration.

To enhance the stability and convergence of the
iteration, relaxation or successive over-relaxation
techniques are typically adopted as shown in
equation 19. Specifically, the new pressure value

Pi! is formed by weighting and combining the

old value

with the newly calculated pressure,

and this corrected value is subsequently used for
the convergence check and for the next iteration
step.

== o+ (19)
The relaxation parameter is a positive scalar,
generally chosen to be less than unity. In the
present work, a value of 0.5 is adopted.
Because the iterative pressure update is formed
by combining the previously stored and newly
computed nodal pressures, the intermediate
pressure values do not exactly satisfy equation 20.
However, the iterative process converges to the
correct solution. Convergence is determined
using a relative-error criterion, with the tolerance
setto = 0.0001.
Relative tolerance—based convergence criterion:

=] :1|, - |

= (20)
=1 =1

4. Orifice Flow-Rate Computation and Flow
Equilibrium Condition

4.1 Computation of the Inflow Rate through
the Capillary Orifice

In SHSBs, the flow characteristics of the
throttling element play a critical role in
establishing the pressure within the recesses and,
consequently, in determining the load-carrying
capacity and static performance of the bearing.
To describe the flow behaviour of the lubricant
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supplied to the recesses under a prescribed supply
pressure, a flow-rate model based on the
assumptions of incompressible fluid flow and
energy conservation is commonly employed.
Accordingly, the inflow rate through the capillary
orifice can be expressed as a function of the
pressure difference between the supply line and
the recess, as given by the following equation 21:

2 -
= 70 A ) @1

Here, =0.6 0.8 is the flow coefficient;
0=4.0x 1073 is the orifice diameter; =
870 / 3 is the lubricant density; =20 x
10° is the supply pressure; and denotes

the oil-chamber pressure.
The orifice diameter is transformed into equation

22 and equation 23:
=| (1-——2— 22
| () @

| gl @

Because the calculated and
values are very close to each other, it is sufficient
to select either one.

4.2 Flow Rate Calculation at a Small Orifice
Throttle
Figure 5 illustrates the flow-control model of the
spherical hydrostatic pocket. High-pressure oil is
supplied through the central orifice, generating
the supply pressure and the inflow rate
Driven by the cavity pressure, the lubricant
spreads circumferentially along the spherical
clearance and leaks from the four boundaries of
the pocket, namely , , , and ,
resulting in the corresponding leakage flows ,
, , and . The orifice exit pressure is
determined from the flow-conservation principle,
wherein the inflow through the orifice equals the
total outflow from the control region.

1 c
|

Orifice Restrictor

Qu Qs
- —t—»

a l‘, b
Figure 5. Flow-Control Model of the Spherical
Hydrostatic Oil Chambe

4.2.1 Calculation of circumferential flow rate
Based on the classical lubrication theory and
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under the assumptions of laminar flow and
negligible inertia effects, the circumferential flow
rate per unit width can be expressed as a function
of the local film thickness and the circumferential
pressure gradient, as given by the following
equation 24 and equation 25:

3
= (— 24
—(—) ¥
—_ — 2 I
Let - ( /2) B - 1+ 2
> 3
T vz312  sin (_>
a (25)
I B
, 12 (]
Nondimensional circumferential flow rate =
2 — = 3 -
7 , therefore , s I
1.317, , =0

4.2.2 Calculation of axial flow rate

Assuming laminar flow, incompressible lubricant,
and negligible inertia effects, the axial flow rate
per unit width can be expressed in terms of the
local film thickness and the axial pressure
gradient, as given by the following equation 26
and equation 27:

T (26)
0= () @
3
i
3 2
= 02 o 1; — ¢
Nondimensional axial flow rate 2% ,
therefore = -~ 3L c

0 2 :

As shown in Figure 5, the flow rate through the

orifice equals the sum of the flow rates through

the four edges, which corresponds to equation 28

and equation 29.

= + + + (28)

Substituting equation 25 and equation 27 into

equation 28 vyields the orifice outflow rate

formula given by equation 29:
=2, (1+

+2

2

2.3

2
wr T H_Z) (29)

4.3 Flow Continuity Condition

According to the continuity equation and the
principle of mass conservation, the mass flow
rate through the orifice must be identical at the
inlet and outlet under steady-state conditions
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By substituting equation 17 and equation 28 into
the continuity equation and simplifying, we
obtain equation 30:

1+
The pressure P was obtained by simultaneously
solving equations 20 to equation 34, discretizing
the flow-rate expressions, and applying the
relaxation iteration method. The numerical
solution of the static characteristics is then
computed using a MATLAB program, and the
corresponding workflow is shown in Figure 6.

| Input initial data and bearing siructural |

+1

| Calculate the inlet flow rate through the orifice ‘

¥

Discretize the computational domain and calculate
the oil film thickness H at each grid node

|App[)‘ boundary conditions and assign the initial oil film thickness Py
|

Calculate the coefficients of the iterative equations at each grid node
A(6,#;). B(8.#;). C(8,®)). D(6,®;)

¥

Calculate the oil film pressure using the relaxation iterative method [

r N |

m yn pEr
T T Py

<e?

Calculate the outlet flow rate of the orifice using the flow equation

Is the flow continwity condition
satisfied?

Output the oil film pressure and calculate the load capacity and stiffness

End

Figure 6. Oil Film Pressure Calculation
program flow diagram

4.4 Evaluation of Load Capacity and Stiffness
4.4.1 Evaluation of load capacity

Dimensional form load capacity can be expressed
as equation 31.

=22 T
SR B GV
-7 ;=)

EN

The nondimensional form can be expressed as
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equation 32.

=227 02 (=)
—_ 2 ; 2 02 ( =) (32)
= (=)
. e
Radial load capacity = + , axial load

capacity

4 4.2 Evaluation of stiffness

Based on the definition of stiffness, the stiffness
of the bearing can be expressed as equation =

—, the nondimensional form can be expressed as
equation 33.

-— (33)

5. Results and Discussion
The analysis and computation presented in this
work are based on SHSBs model, whose key
parameters are summarized in Table 1.

Table 1. SHSBs Structure Parameters

Basic parameter Value
Bearing radius (R/m) 0.06
s . 1x10,1.5x107,
Initial oil film thickness ( o/ ) 2210
Stator outer wrap angle () 90°
Stator inner wrap angle (6,) 30°
Number of restrictor orifices () 4
Angular distribution of the throttling o
orifices (6)) 60
Restrictor orifice diameter (dy/m) 0.004
Ambient pressure (P,/MPa) 0.1
Dynamic viscosity (/P,-s) 5.835x1073
Density (p/kg'm™) 873
Circumferential eccentricity ratio(g,) | 0,0.2,0.4,0.6,0.8
Axial eccentricity ratio (&,) 0,0.2,0.4,0.6,0.8
Supply pressure (P,/MPa) 2,4,6
Half tilt angle (B) 90°

ENmiems ks nil ffim (hickness distibution

" i

o

Figure 7. Dimensionless Oil Film Thickness
Figure 7 shows the nondimensional film-
thickness distribution of the spherical hydrostatic
bearing for =04 and = 0.4. Based on this
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distribution, the film thickness at each grid point
is determined and subsequently used in the
discretized  equations to  calculate  the
corresponding nodal pressures.

5.1 Pressure Distribution in the Bearing Oil
Film
As demonstrated in Figure 8§, for a supply
pressure of =2, a circumferential eccentricity
of  =0.4, and an axial eccentricity of = 0.4,
the dimensionless oil-film pressure  is derived
through the application of the transformation
= ( ( /2)) to the polar angle and the
unfolding of the hemispherical surface onto a
plane. As illustrated by the figure, the oil-film
pressure undergoes a precipitous decline from
each of the four restrictor orifices towards the
surrounding regions.

Figure 8. Dimensionless Oil Film Pressure
As illustrated in Figure 9, the dimensionless oil-
film pressure distribution is presented along the
45°  meridional plane under various supply
pressures. The circumferential eccentricity has
been fixed at = 0.4 and the axial eccentricity
at =04 . As demonstrated, the maximum
pressure is observed to occur at the restrictor
orifice, with a concomitant decrease in pressure
on both sides of the orifice in the circumferential
direction. Furthermore, it is evident that an
increase in supply pressure results in a
corresponding rise in dimensionless oil-film
pressure.

Circumferential angle ¢

Figure 9. Dimensionless Oil Film Pressure
under Different Charge Oil Pressure

5.2 Influence of the Initial Film Clearance on
Bearing Performance

As illustrated by Figures 10 and 11, the
relationship between the initial film clearance and
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the bearing load capacity (N) obtained from
numerical calculations is demonstrated.

When the eccentricity is less than 0.4, the load
capacity is negligible. Consequently, in the field
of bearing design, it is recommended that a larger
eccentricity be adopted in order to achieve higher
load capacity. In a similar manner, the
relationship between initial film clearance and
stiffness is demonstrated in Figures 12 and 13. It
is evident that ( ) demonstrates a congruent

trend, whereby an augmentation in eccentricity is
concomitant with an increase in stiffness.

Axial eceentricity - Axial eapacity

Figure 10. Axial Eccéntrlcity - Axial Capacity

as Radial eccentricity - Radial capacity

—o—h, - 110

4 s
—e—h, = 1.5%10°

hy =2x10°

Radial capacity

Figure 11. Radial Eccehtricity - Radial
Capacity

Axial eccentricity - Axial stiffness

Axial stiffness
*

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Axial eccentricity

Figure 12. Axial Eccentricity - Axial Stiffness

Radial cccentricity - Radial stiffness

Figure 13. Radial Eccentricity - Radial
Stiffness
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5.3 Effect of Supply Pressure on Bearing
Performance

Figures 14 and 15 present the relationship
between supply pressure and the bearing load
capacity obtained from numerical calculations. It
is evident that the supply pressure exerts a
pronounced influence on the static performance
of the spherical hybrid bearing. As the supply
pressure increases, both axial and radial load
capacities rise  significantly  across all
eccentricities. This is due to the formation of a
stronger hydrostatic film under higher supply
pressure.

45 Axial eccentricity - Axial capacity
.5

—e—P =2
—e—P -4
Pﬂ 6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Axial eccentricity

Figure 14. Axial Eccentricity - Axial Capacity

14 Radial eccentricity - Radial bearing capacity

—a—P -2
(Bl s odifal
P., 6

Radial bearing capacity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Radial eccentricity

Figure 15. Radial Eccentricity - Radial
Capacity

As demonstrated in Figures 16 and 17, there is a
corresponding variation in film stiffness with
supply pressure. The findings of the present study
demonstrate that an increase in supply pressure is
concomitant with an increase in film stiffness.
Although the axial stiffness is known to decrease
with increasing eccentricity, its absolute
magnitude has been shown to consistently
increase as the supply pressure rises. The radial
stiffness demonstrates a more intricate
relationship with eccentricity; nevertheless, an
elevated supply pressure invariably results in
enhanced stiffness levels under all operating
conditions.
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o Axial eccentricity - Axial stiffness
i R [N
—a—P =2
i M,
P =6

[

B B o o

Axial Bearing stiffness

8
bb\’\\‘\q

4

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8
Axial stiffness

Figure 16. Axial Eccentricity - Axial Stiffness

5 Radial eccentricity - Radial stiffness
200

—a—P =2
—a—P =4
P -6

Radial stiffness

10

5

1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Radial eccentricity

Figure 17. Radial Eccentricity - Radial
Stiffness
It is evident that an increase in supply pressure
has a significant impact on the load-bearing
capacity and stiffness of the lubricant film. This,
in turn, enhances the static performance of
spherical hybrid bearings.

5.4 Effect of Orifice Diameter on Bearing
Performance

The diameter of the restrictor orifice exerts a
pronounced influence on the load-carrying
performance and film stiffness of the spherical
hybrid bearing, exhibiting clear nonlinear
characteristics.

As illustrated in Figures 18 and 19, the numerical
evaluations reveal the impact of varying orifice
diameters on load capacity. As the orifice
diameter increases, both the axial and radial load
capacities initially rise and then decline,
indicating the existence of an optimal diameter
range that maximises the bearing load. This
behaviour can be attributed to the increased
supply flow rate and strengthened hydrostatic
effect resulting from a larger orifice. However,
when the diameter becomes excessively large, the
throttling effect weakens, leading to insufficient
pressure being built up in the oil film and
subsequent decrease in load capacity.
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. . Relationship between restrictor orifice diameter and axial capacity
3.5 T

Axial capacity

2 4 6 8 10 12 14

Restrictor orifice diameter
Figure 18. Relationship between Restrictor
Orifice Diameter and Axial Capacity

5 Relationship between restrictor orifice diameter and radial capacity

D

2 4 6 8 10 12 14 16 18

Restrictor orifice diameter
Figure 19. Relationship between Restrictor
Orifice Diameter and Radial Capacity

Figures 20 and 21 illustrate the influence of the
orifice diameter on stiffness. The axial stiffness
also exhibits a "rise-and-fall" trend, reaching its
maximum near the optimal orifice diameter.
Conversely, the radial stiffness exhibited an
upward trend in relation to the orifice diameter,
signifying that the radial film stiffness is more
substantially influenced by the augmented flow
rate. The selection of the restrictor-orifice
diameter must be made with consideration of the
throttling pressure drop and the oil-film flow rate,
in order to achieve optimal static performance in
terms of load capacity and stiffness

. . Relationship between restrictor orifice diameter and axial stiffness
3.5 T

2 4 6 8 10 12 14

Restrictor orifice diameter
Figure 20. Relationship between Restrictor
Orifice Diameter and Axial Stiffness
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Relationship between restrictor orifice diameter and radial stiffness

Radial stiffness
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Figure 21. Relationship between Restrictor
Orifice Diameter and Radial Stiffness

6. Conclusions

The present study systematically investigates the
static characteristics of SHSBs utilised in
roundness testers through numerical modelling
and parametric analysis. The establishment of a
spherical-coordinate lubrication model was
achieved through the transformation of the
Reynolds equation via the use of conformal
mapping, thus facilitating the acquisition of the
oil-film pressure distribution through the
integration of the flow-continuity condition with
a capillary-orifice restrictor model. The
governing equations were solved using a finite-
difference  relaxation = scheme,  enabling
quantitative evaluation of load capacity and
stiffness under various operating and structural
parameters. The primary conclusions that can be
drawn from this analysis are as follows:

(1) A reliable numerical framework for SHSBs
was developed by unfolding the hemispherical
lubrication domain onto a rectangular plane and
applying appropriate boundary conditions. The
proposed model has been demonstrated to
effectively capture the coupled hydrostatic—
hydrodynamic lubrication behaviour, thereby
providing stable convergence for pressure-field
computation.

(2) The oil-film pressure distribution
demonstrates significant local peaks in proximity
to the restrictor orifices, which rapidly decay
towards the surrounding regions. It has been
demonstrated that an increase in supply pressure
has a significant effect on the overall pressure
level, thereby enhancing both axial and radial
load-carrying capacities and film stiffness.

(3) It is imperative to acknowledge the pivotal
function of bearing eccentricity in optimising
static performance. Increased circumferential and
axial eccentricities have been shown to
strengthen the hydrodynamic effect, leading to
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substantial improvements in load capacity and
stiffness. When the eccentricity is minimal, the
load capacity is constrained, signifying that a
specific degree of eccentricity is requisite to
achieve optimal utilisation of the hybrid
lubrication mechanism.

(4) The initial oil-film clearance exerts a
significant influence on the performance of the
bearing. It has been demonstrated that larger
eccentricities, when combined with appropriate
film thicknesses, result in higher load capacity
and stiffness. Conversely, excessively large
clearances have been shown to have a detrimental
effect on these parameters.

(5) The diameter of the restrictor-orifice has been
demonstrated to manifest a discernible non-linear
effect on the performance of the bearing. Initially,
both axial and radial load capacities exhibit an
increase, subsequently decreasing with increasing
orifice diameter. This phenomenon unveils the
existence of an optimal diameter range. This
behaviour is the result of a balance between
throttling pressure drop and lubricant flow rate.
Axial stiffness exhibited a comparable trend,
while radial stiffness demonstrated a general
increase with orifice diameter.

The results obtained provide valuable insights
into the parameter-dependent static behaviour of
SHSBs. The proposed modelling approach and
the identified performance trends offer practical
guidance for the structural design and parameter
optimisation of precision bearings in roundness
testers and other ultra-precision rotating systems.
Subsequent research will extend the present study
to dynamic characteristics, thermal effects, and
elastic deformation of bearing components, with
a view to further improving model fidelity and
engineering applicability.
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