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Abstract: In financial markets, reliable
forecasting of stock index volatility constitutes
a fundamental component of risk
management and strategic investment
decisions. Traditional economic models
struggle to capture complex financial market
relationships. For example, Generalized
Autoregressive Conditional
Heteroskedasticity (GARCH) models fail to
fully account for nonlinear dependencies and
long-term memory. As a result, accurate
forecasting remains a challenging task. In
response to the challenges, the LSTM–GEM
hybrid framework is proposed in this study,
integrating GARCH-family models with Long
Short-Term Memory (LSTM) networks.
Conditional volatility predictions from
GARCH-family models serve as input
features to the LSTM network. This allows
the hybrid model to model the linear and
nonlinear patterns underlying financial time
series. To assess the contribution of high-
frequency information, we compare model
performance when using only low-frequency
inputs versus combining both data types. The
experimental findings indicate that the
LSTM-GEM model consistently achieves
superior performance compared to both
standalone GARCH-family and LSTM
models. Furthermore, incorporating high-
frequency data improves forecasting accuracy.
The findings demonstrate that the LSTM-
GEM model attains lower prediction errors,
with the inclusion of high-frequency data
further improving its accuracy.

Keywords: LSTM; GARCH; Volatility
Prediction

1. Introduction
Financial risk management is crucial for ensuring
market stability and promoting sustainable
development, with volatility forecasting serving
as a core tool for quantifying uncertainty and
managing risks[1]. Volatility reflects the degree

of fluctuation in asset prices and is especially
important for asset pricing, derivative valuation,
portfolio risk evaluation, and hedging activities.
Accurate volatility forecasts are also essential for
risk measurement frameworks, such as value-at-
risk (VaR), which rely on reliable estimates to
evaluate potential losses under normal market
conditions. Consequently, volatility prediction
has become a central focus of financial research
and practice.
Despite extensive research, forecasting financial
market volatility remains a challenging task.
Traditional econometric models provide
statistical rigor and interpretability but often rely
on restrictive linear assumptions that fail that
inadequately reflect nonlinear patterns and long-
term dependencies present in the financial data.
Deep learning approaches, including recurrent
neural networks (RNNs) and LSTM models,
offer strong capabilities in modeling nonlinear
and temporal dynamics but tend to overlook
established financial theories and may suffer
from overfitting when applied independently.
Moreover, the increasing availability of high-
frequency data offers valuable intraday
information; however effectively integrating such
data into volatility forecasting frameworks
remains a complex challenge.
Considering the drawbacks of conventional
approaches, a new hybrid framework named
LSTM–GEM is established by coupling the
strengths of GARCH-family models with the
temporal learning capability of LSTM networks.
Specifically, the LSTM network takes as input
low-frequency financial data, realized volatility
derived from high-frequency data, and parameter
estimates generated by GARCH-family models.
By combining these inputs, the model captures
both brief intraday variations and extended
temporal dependencies in volatility, effectively
integrating statistical modeling with data-driven
deep learning.
This study makes several key contributions.
From a theoretical perspective, the proposed
hybrid model integrates statistical volatility
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modeling with deep learning, providing a
framework capable of capturing complex market
dynamics and multi-scale volatility patterns.
From a practical perspective, empirical analyses
indicate that the framework surpasses both
standalone conventional econometric models
and deep learning approaches in volatility
prediction, enhancing forecast reliability and
robustness, and serving as a dependable
instrument for financial risk management and
investment decision-making.
The remainder of this paper is structured as
follows. Section II provides a review of existing
research on volatility forecasting, including both
econometric and deep learning approaches.
Section III outlines the research methodology,
including the overall modeling framework and
general procedures for data preparation and
model construction. Section IV describes the
experimental design, evaluation metrics, and
comparative analysis of model performance.
Finally, Section V presents the conclusions,
summarizes key findings, highlights limitations,
and suggests directions for future work.

2. Related Work
This section is structured into three parts: the
first part provides a comprehensive review of the
evolution and extensions of GARCH-family
models for volatility forecasting; the second part
examines LSTM networks and their capacity to
capture complex nonlinear temporal
dependencies; and the third part examines hybrid
frameworks that combine statistical volatility
modeling with deep learning techniques.

2.1 Garch
Bollerslev[2] analyzed the Autoregressive
Conditional Heteroskedasticity(ARCH) model
proposed by Engle[3] and subsequently extended
it by introducing the GARCH model, which
addressed the overparameterization issue of the
original ARCH model and has since been widely
adopted. As research on volatility modeling
progressed, scholars proposed various extensions
to the standard GARCH framework to capture
specific empirical characteristics of financial
time series. These extensions retained the
advantages of the original model while
improving its ability to represent stylized facts
such as periods of calm and turbulence, volatility
clustering[4], and leptokurtic distributions.
However, the standard GARCH model has
limitations in representing asymmetric volatility

responses to shocks, particularly the leverage
effect, in which negative shocks influence
volatility more strongly than positive shocks of
equivalent magnitude. To overcome this
limitation, Nelson[5] introduced the Exponential
GARCH (EGARCH) model, effectively
incorporating asymmetry. Similarly, Zakoian[6]
systematically developed the Threshold GARCH
(TGARCH) model, overcoming the symmetric
effect assumption of standard GARCH models.
Engle et al.[7] extended the ARCH framework to
the ARCH-in-Mean (ARCH-M) model to
account for situations where returns depend on
both the mean and the conditional variance,
while Engle and Kroner[8] proposed the
multivariate GARCH model for jointly modeling
multiple time series. Overall, these developments
highlight the evolution of GARCH-family
models in addressing the limitations of ARCH
and capturing key features of financial time
series for robust volatility modeling.

2.2 LSTM
Over the past few years, deep learning techniques
have found growing application in financial time-
series modeling, with LSTM networks showing
strong capability in capturing nonlinear
dependencies and long-term temporal patterns.
Hochreiter and Schmidhuber[9] were the first to
propose the LSTM model, introducing a gated
recurrent architecture designed to model long-
term dependencies in sequential data.
SiamiNamin et al.[10] evaluated the predictive
performance of ARIMA and LSTM models on
economic and financial time series, with
experimental results indicating that LSTM
achieves superior predictive accuracy. Xiong et
al.[11] employed an LSTM model incorporating
domestic Google Trends data to forecast S&P
500 volatility, demonstrating performance
superior to that of alternative benchmark models.
Chen et al.[12] applied LSTM models to forecast
Chinese stock market returns, confirming their
superior performance over alternative methods.
Fischer and Krauss[13] employed LSTM models
for out-of-sample directional volatility prediction
on S&P 500 constituents over the period 1992–
2015, outperforming random forests, deep neural
networks, and logistic regression models.

2.3 Hybrid Models
The effective integration of GARCH models with
emerging methods has become a prominent
research topic. Roh[14] introduced a hybrid

46 Journal of Statistics and Economics (ISSN: 3005-5733) Vol. 2 No. 6, 2025

http://www.stemmpress.com Copyright @ STEMM Institute Press



framework that integrates financial time-series
models (EWMA, GARCH, EGARCH) with a
feed forward neural network using the KOSPI
200 index, showing that the combined approach
outperforms individual models, with the
EGARCH–network combination performing best.
Kim and Won[15] proposed a hybrid framework
integrating LSTM networks with multiple
GARCH-family models for forecasting stock
index volatility, demonstrating superior
predictive performance. Hu et al.[16] developed
an LSTM–ANN–GARCH hybrid model for
copper price volatility prediction, which
outperformed single models. Cao and Ren[17]
investigated RMB exchange rate volatility
prediction using a hybrid LSTM and GARCH-
family model, demonstrating that the hybrid
approach significantly outperforms individual
models. Verma[18] developed a GARCH–LSTM
hybrid model for crude oil futures volatility
forecasting and demonstrated that the hybrid
framework outperforms traditional GARCH-
family models across multiple horizons. Pan et
al.[19] constructed a MULTI-GARCH-LSTM
hybrid model for gold futures prediction and
showed it outperformed standalone GARCH-
family models, LSTM, and other hybrids in
predictive accuracy.
Existing volatility forecasting models often rely
on traditional econometric methods and trading
data, yet they underutilize high-frequency
information and overlook the complementarity of
statistical and deep learning approaches. This
study tackles the aforementioned shortcomings
by proposing a hybrid approach which merges

GARCH-family models with LSTM networks,
incorporating low-frequency indicators, realized
volatility from high-frequency data, and GARCH
parameter estimates to enhance prediction
accuracy and robustness.

3. Research Methodology
As illustrated in Figure 1, the proposed
framework for stock index volatility prediction
consists of two primary components: (1)
parameter estimation from GARCH-family
models to capture linear volatility patterns, and (2)
volatility forecasting using an LSTM network
that integrates low-frequency financial indicators
and realized volatility derived from high-
frequency data. Detailed descriptions of each
component are provided in the following
subsections.

3.1 Sample Selection and Data Preprocessing
3.1.1 Data collection
The study selects the CSI 300 Index as the
research subject, as it covers most large-cap
stocks in the Shanghai and Shenzhen markets,
providing a representative and highly liquid
benchmark that reflects mainstream investor
returns in China. The dataset comprises both
low-frequency daily trading data and high-
frequency 5-minute data, sourced from the Wind
database. The sample covers the period from
September 24, 2022, to September 24, 2025,
totaling 905 trading days. Eighty percent of the
data is used for training and model tuning, while
the remaining 20% is reserved for testing and
performance evaluation.

Figure 1. Stock Index Volatility Prediction Framework
3.1.2 Data processing
To eliminate scale differences among variables
and accelerate model convergence, all features
are normalized using the min–max method,

represented by

xi�=
xi−min1≤j≤n

xj

max
1≤j≤n

xj−min1≤j≤n
xj

(1)

Where xmin and xmax denote the minimum and
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maximum of each variable. This transformation
maps all features to the [0,1] range, improving
model stability and predictive accuracy.
Furthermore, the stock index return is widely
recognized as a fundamental measure for
evaluating investment performance. Let pt denote
the daily closing price index; the return of the
stock index can be calculated as:

rt=100 ln pt
pt−1

(2)
where rt represents the logarithmic return at time
t.
What’s more, Volatility, as a key indicator of
stock price fluctuations, has received growing
interest recently, particularly given the growing
availability of high-frequency financial data at
shorter intervals. Following the realized volatility
framework proposed by Andersen et al.[20], the
high-frequency data are processed through the
following steps:
Use mean imputation to handle missing values
and outliers

Remove data corresponding to non-trading
periods, including market holidays, overnight
gaps, and intraday breaks
Cleaned intraday prices are normalized using the
min–max method to ensure consistent scaling
and facilitate model convergence.
Use Equation (1) to normalize the cleaned data
Construct five-minute intervals such that each
trading day tis divided into 48 intervals, with d0
denoting the opening time and d1,d2,⋯ d48
representing subsequent 5-minute intervals. Let
Pt,d denote the price at time d on day t, where Pt,0
is the opening price and Pt,1 the closing price of
the first interval. The intraday high-frequency
return can be calculated as:

Rt,d= lnPt,d − lnPt,d−1 (3)
where t=2,3⋯ 905, d=1,2⋯ 48
The realized volatility (RV) of day t is then
computed as the sum of squared intraday returns:

RVt=
d=1

nt
Rt,d2� (4)

Table 1. Descriptive Statistics of Daily Log Returns of the CSI 300 Index
Mean Standard Deviation Skewness Kurtosis Jarque-Bera Statistic p-value

rt 0.0220 1.0362 0.3298 14.4509 6347.6373 0
where nt=48 denotes the total number of intraday
observations.

3.2 Parameter Estimation of the GARCH
Family Models
3.2.1 Descriptive statistics
A preliminary descriptive analysis of the CSI 300
Index return series is conducted, including the
computation of the mean, standard deviation,
skewness, kurtosis, Jarque–Bera (J–B) statistic,
and its associated p-value. The results are
summarized in Table 1.
Table 1 and Figure 2 report the descriptive
statistics of the dataset. The mean of daily log
returns is 0.022, and the standard deviation is
1.0362, indicating that, for a given mean, larger
standard deviation corresponds to higher stock
price volatility. The skewness is 0.3298,
suggesting a slight rightward skew, meaning that
upward movements are marginally more
probable than downward movements. The excess
kurtosis is 14.4509, indicating a highly peaked
distribution with fat tails, implying a higher
likelihood of extreme returns. The Jarque-Bera
test produces a value of 6347.6373 with a p-value
below 0.01, which provides strong evidence
against the null hypothesis of normality and
suggesting that the return distribution
significantly deviates from normality.

Figure 2. Log Difference in CSI 300 Index
Histogram

3.2.2 Stationarity test
In this study, the stationarity of the CSI 300
Index daily logarithmic returns was examined
using both the Augmented Dickey-Fuller (ADF)
and Phillips-Perron (PP) tests. As reported in
Table 2, the ADF test statistic is large in
absolute value with a p-value below 0.01,
providing sufficient evidence to reject the null
hypothesis of non-stationarity at the 1%
significance level. Likewise, the PP test yields a
statistic of -23.1846 with a p-value of 0.0000,
also rejecting the null hypothesis at the 1% level.
These results collectively indicate that the daily
log return series rt ​ is stationary.
Table 2. Stationarity Test of Daily Log Returns

of the CSI 300 Index
ADF Test PP Test

rt -11.4957 <0.01 -23.1846 <0.01
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3.2.3 GARCH-family model diagnostics
In this study, the daily returns volatility of the
CSI 300 Index was analyzed using GARCH-
family models. Prior to model estimation, the
suitability of the return series rt ​ for GARCH
modeling was examined via the Ljung-Box and
ARCH-LM tests. As shown in Table 3, the
Ljung-Box test at lag 10 yields a statistic of
36.7432 with a p-value less than 0.01,
constituting strong evidence against the null
hypothesis of no autocorrelation at the 1%
significance level. The ARCH-LM test reports an
LM statistic of 73.9032 with a p-value under 0.01,
indicating significant ARCH effects, indicating
significant ARCH effects at the 99% level. These
results confirm that the conditional
heteroskedasticity exists within the daily returns
of the CSI 300 Index, satisfying the prerequisites
for GARCH-family modeling. Accordingly,
standard GARCH(1,1), GARCH(1,1)-M, and
EGARCH(1,1) specifications are employed for
parameter estimation.
Table 3. GARCH-family Model Diagnostics of

Daily Log Returns of the CSI 300 Index
Ljung-Box Test ARCH-LM Test

rt 36.7432 <0.01 73.9032 <0.01
3.2.4 Parameter estimation of GARCH-Family
models
To account for the time-varying characteristics
of volatility, the parameters of the GARCH-
family models are estimated through a rolling-
window procedure. Specifically, a sequence of
200 consecutive trading days is employed for
parameter estimation, with the estimated values
assigned to the last day of the window. The
window then rolls forward one day at a time to
generate dynamic parameter estimates. The key
parameters include: α and β , representing the
ARCH and GARCH effects, respectively, which
indicate the immediate and persistent impacts on
conditional variance; γ , reflecting the
asymmetric impact of positive and negative
shocks on volatility, with γ>0 indicating a
greater impact of positive news on returns and
vice versa; and ρ , capturing the influence of
expected volatility on the mean return. Since the
explanatory variables evolve gradually, the
rolling estimates remain relatively stable,
reflecting consistent volatility dynamics over
time.

3.3 Construction of the LSTM Prediction
Model
As illustrated in Fig. 3, the LSTM prediction

model is designed to capture the nonlinear
temporal dependencies of realized volatility
(RV). The architecture consists of an input layer
that incorporates RV along with low-frequency
financial features, followed by the first LSTM
hidden layer and a Dropout layer to mitigate
overfitting. A second LSTM hidden layer and an
additional Dropout layer are then applied for
deeper feature extraction and further
regularization. The network concludes with one
fully connected layer and a final output layer
that generates the predicted RV. As illustrated in
Fig. 3, the LSTM prediction model is designed
to capture the nonlinear temporal dependencies
of realized volatility (RV). The architecture
consists of an input layer that incorporates RV
along with low-frequency financial features. The
first LSTM hidden layer processes the sequential
input data, succeeded by a Dropout layer to
reduce overfitting. Subsequently, a second
LSTM hidden layer extracts deeper temporal
features, accompanied by an additional Dropout
layer for further regularization. The network
concludes with two fully connected layers: the
first dense layer integrates the extracted features,
while the second layer functions as the output
layer to produce the predicted RV. This structure
ensures that both short-term and long-term
patterns in the financial time series are captured
effectively while controlling overfitting.
For model training, the hyperparameters are
determined through grid search to ensure
optimal predictive performance. The grid search
systematically explores multiple parameter
combinations and selects the configuration that
minimizes the validation error. As a result, the
final settings are as follows: the time step is set
to 22, the batch size to 32, the number of epochs
to 50, the learning rate to 0.001, and the mean
squared error (MSE) is adopted as the loss
function. This configuration effectively balances
model complexity and generalization, leading to
robust and accurate volatility forecasting.

Figure 3. LSTMModel
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3.4 Construction of the Hybrid Forecasting
Model
This study integrates GARCH-family models
with LSTM networks to construct a hybrid
forecasting framework, leveraging the strengths
of both approaches to enhance stock index
volatility prediction. Specifically, the α
coefficient representing volatility persistence
and the β coefficient representing the magnitude
of volatility shocks from the GARCH model are
used as inputs to the LSTM, forming the LSTM-
G model. Subsequently, the γ coefficient from
the EGARCH model, which captures
asymmetric information effects, is incorporated
into the input layer to construct the LSTM-GE
model. Finally, the ρ coefficient from the
GARCH-M model, reflecting mean effects, is
added to form the LSTM-GEM model. All
LSTM and LSTM–GARCH hybrid models
employ a rolling prediction scheme. Except for
the differences in input features (GARCH-family
parameters), the network architecture and
hyperparameter settings remain consistent across
models.
Table 4. Comparison of Prediction Results among

Different Models
Model MAE MSE MAPE RMSE
GARCH 0.1834 0.0297 38.09 0.1722
LSTM 0.0692 0.0075 13.96 0.0865
LSTM-G 0.0597 0.0067 12.07 0.0816
LSTM-GE 0.0526 0.0058 10.63 0.0764
LSTM-GEM 0.0457 0.0054 9.27 0.0737
LSTM-GEM
(without RV) 0.1309 0.0141 26.33 0.1186

Figure 4. Comparison of Model Prediction
Performance

Figure 5. Ablation Study: Impact of High-
frequency Data

4. Experiments and Results Analysis

4.1 Performance Evaluation Metrics
To comprehensively evaluate the predictive
performance of different models, this study
employs four error metrics: Mean Absolute
Error (MAE), Mean Absolute Percentage
Error (MAPE), Mean Squared Error (MSE), and
Root Mean Squared Error (RMSE), defined as
follows:
Mean Absolute Error (MAE):

MAE= 1
T t=1

T RVt−σ� t
2� (5)

Mean Absolute Percentage Error (MAPE):

MAPE= 1
T t=1

T RVt−σ�t
2

σ�t
2� (6)

Mean Squared Error (MSE):

MSE= 1
T t=1

T
RVt−σ� t2

2� (7)

Root Mean Squared Error (RMSE):
RMSE= MSE (8)

4.2 Experimental Results and Performance
Comparison
We select GARCH and LSTM as baseline
models and conduct comparative experiments
with the proposed LSTM-G, LSTM-GE, and
LSTM-GEM models. Additionally,
ablation experiments are conducted to evaluate
the effect of incorporating high-frequency data
on model performance.
Figure 4 and Table 1 present a summary of the
models’ forecasting accuracy. The hybrid
approaches (LSTM-G, LSTM-GE, and LSTM-
GEM) consistently outperform the baseline
LSTM and GARCH models across all metrics.
Notably, LSTM-GEM achieves the lowest errors,
demonstrating the effectiveness of incorporating
GARCH-family parameters, including
asymmetry and mean-effect components, into
the LSTM network. The error comparison plot
clearly illustrates the progressive improvement
from single-model to hybrid-model predictions.
Building on the comparative experiments,
ablation studies were conducted to evaluate the
contribution of high-frequency data (realized
volatility, RV) to the hybrid model. Specifically,
the LSTM-GEM model was re-evaluated
without including RV as an input feature, and
the results are summarized in Table 4 and
visualized in Figure 5 The findings indicate that
incorporating high-frequency data significantly
enhances predictive performance, further
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demonstrating its importance in stock index
volatility forecasting.

5. Conclusion and Future Work
This work introduces the LSTM-GEM hybrid,
which incorporates GARCH-family model
parameters, high-frequency realized volatility,
and low-frequency financial features for
forecasting the volatility of the CSI 300 Index.
The experimental outcomes indicate that the
proposed LSTM-GEM model considerably
surpasses the baseline approaches, and the
inclusion of high-frequency data further
enhances predictive accuracy. These results
highlight underscore the utility of integrating
econometric models with deep learning
approaches for stock index volatility forecasting,
providing practical insights for risk management
and derivative pricing.
However, this study has certain limitations. The
three-year data span may restrict the model’s
capacity to reflect long-term trends and extreme
market events. In addition, macroeconomic
factors, such as investor sentiment, national
policies, and market news, are not incorporated,
although they may have a considerable impact on
volatility dynamics.
Future work can be pursued along broader
directions, including extending the data types and
time horizon, incorporating additional market-
relevant information, exploring alternative
hybridizations of deep learning and econometric
models, and applying the approach to different
financial markets and asset classes to enhance
predictive performance and generalization
capabilities.
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