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Abstract:To address the core contradiction
of "rising costs and insufficient efficiency" in
the healthcare system, this study proposes a
healthcare system optimization framework
integrating robust causal inference and
large-scale optimization, targeting issues
such as high-dimensional interference,
hidden confounding, and lack of model
robustness in observational healthcare data.
First, a Robust Causal Inference Model
(RCI-Model) is constructed, which
eliminates hidden confounding through
spectral transformation debiasing and
identifies core associations via multi-scale
causal graph pruning to achieve accurate
estimation of clinical causal effects.
Furthermore, with causal effects as
constraints, an integer programming model
incorporating efficacy and resource
limitations is established, and cross-
institutional resource optimization is
completed by combining Lagrangian duality
and federated learning. Experiments based
on 530,000 hospitalization samples show that
the average hospitalization cost is reduced by
18.7%, the bed turnover rate is increased by
23.4%, and the total regional healthcare cost
across institutions is reduced by 15.2%. The
research confirms that robust causal
inference can separate spurious correlations
in healthcare data, providing a reliable basis
for cost control and efficiency optimization,
and technical support for the
implementation of hierarchical diagnosis and
treatment.
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1. Introduction
Population aging, upgraded health demands,
and medical technology iteration have driven
the global rise in healthcare expenditures, with

the proportion of China's total health
expenditure in GDP having increased
significantly. However, the uneven allocation of
medical resources and complex clinical
processes lead to low efficiency. The average
length of stay in top-tier hospitals is much
longer than that in developed countries, and the
imbalance between cost and efficiency has
aggravated the burden on residents, becoming a
core bottleneck in the implementation of the
"Healthy China 2030" strategy. Traditional
correlation analysis struggles to distinguish
between causal and accompanying relationships,
resulting in policies that "treat the symptoms
but not the root cause." In contrast, robust
causal inference can resist data noise and model
bias, accurately identifying cost drivers and
efficiency pathways. Currently, the application
of robust causal inference in the healthcare field
is still in its infancy. Although there have been
explorations in policy evaluation and chronic
disease treatment, it has not touched on the field
of cost and efficiency. Additionally, there are
common issues such as lack of robustness in
research methods, separation of cost and
efficiency studies, and limited data scale. Based
on this, the multi-method integration innovation
of this study has important practical value.

2. Theoretical Foundation and Method
Construction

2.1 Core Theories of Robust Causal
Inference
The core of causal inference is to identify the
potential causal effect between intervention
variables (e.g., treatment plans) and outcome
variables (e.g., cost, efficacy), i.e., calculating
the Average Treatment Effect (ATE):
ATE=E Y 1 −Y 0 , where Y 1 and Y 0
represent the outcomes under the intervention
and control states, respectively. Hidden
confounding U in healthcare data will cause
bias in traditional estimators, i.e.,
E Y|T=1 −E Y|T=0 =ATE+E U|T=1 −E U|T=0 ,
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where T is the intervention variable.
Robustness design needs to meet dual
objectives: first, eliminating estimation bias
caused by hidden confounding, and second,
reducing the model's sensitivity to data
distribution shifts. This study adopts a two-
stage strategy of "spectral transformation
debiasing + causal graph pruning": in the first
stage, the leading singular values of the design
matrix X are compressed through a spectral
transformation matrix Q , reducing the
perturbation term∥Xb∥2 to a negligible level
(optimal effect when ρ=0.5 ); in the second
stage, confounding paths are identified based on
Directed Acyclic Graphs (DAG), and spurious
association edges are deleted using the IG
pruning method to retain the direct causal path
of "intervention-mediator-outcome" [1,2].

2.2 Large-Scale Optimization Model Based
on Causal Effects
With the causal effects identified by the RCI-
Model as constraints, an integer programming
model for healthcare resource optimization is
constructed. The optimization objective is to
minimize the total regional healthcare cost
while satisfying efficacy constraints and
resource capacity constraints:
Objective function: minZ=∑∑ cixi+diyi
where ci is the direct cost of the i -th type of
patient receiving the j -th treatment plan, di is
the indirect cost (e.g., bed occupancy fee), xi is
the number of patients allocated, and yi is the
input of supporting resources.
Constraints: 1) Causal efficacy constraint:
Based on the treatment effect estimated by the
RCI-Model, the cure rate of the i -th type of
patient after receiving plan j must be ≥θi (θi is
set according to the disease type, e.g., θi≥0.6
for cancer patients); 2) Resource capacity
constraint: ∑xi≤C (C is the equipment capacity
of the j -th plan); 3) Hierarchical diagnosis and
treatment constraint: The proportion of
consultations in primary medical institutions ≥α
( α=0.45 , in line with national policy
requirements).
The Lagrangian duality method is used to
convert the integer programming into a convex
optimization problem, which is solved by the
Alternating Direction Method of Multipliers
(ADMM). The convergence time is controlled
within 2.5 hours for 100,000-level samples,
meeting the timeliness requirements of clinical
decision-making.

2.3 Cross-Institutional Collaborative
Optimization Mechanism
To address the problem of healthcare data
"silos," a federated learning framework is
introduced: each medical institution acts as a
client, training local parameters of the RCI-
Model locally and only uploading model update
gradients to the cloud server; the server
generates a global model by aggregating
gradients (using weighted average, where
weights are proportional to the institution's
sample size) and then distributes it to each
client for parameter fine-tuning. Homomorphic
encryption technology is used to encrypt
gradients to ensure patient privacy and security,
with the model performance loss controlled
within 5%.

3. Experimental Verification and Result
Analysis

3.1 Experimental Data and Scenario Design
Experimental data are sourced from three
channels: 1) A provincial DRG database (2022-
2024), containing 530,000 hospitalization
samples, covering clinical records, cost details,
and prognostic information of 28 diseases; 2)
Lung cancer gene expression data from the
TCGA database, including methylation data of
865,860 CpG sites from 1,200 patients; 3) 24
independent validation sets from the GEO
database for testing model generalization ability
[3,4,5].
Three experimental scenarios are set: 1) Single-
center cost optimization (targeting the
Cardiology Department of a Grade A tertiary
hospital); 2) Cross-institutional collaborative
optimization (covering a hierarchical diagnosis
and treatment network of 12 hospitals); 3)
Robustness test (simulating data distribution
shifts, such as adding low-quality data from
primary hospitals). Comparative methods
include traditional regression analysis (OLS),
Propensity Score Matching (PSM), Debiased
Lasso (DL), and DDL methods.

3.2 Evaluation Index System
A three-dimensional evaluation system of
"causal accuracy - optimization effect -
robustness" is constructed:
Causal accuracy: Estimation bias (BIAS), Root
Mean Square Error (RMSE), and E-value
(measuring confounding resistance, E>1.5 is
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excellent);
Optimization effect: Average hospitalization
cost, bed turnover rate, and treatment effective
rate;
Robustness: Model performance degradation
rate after data distribution shift ( ΔACC ), and
cross-institutional model adaptation error.

3.3 Experimental Results and Analysis
3.3.1 Comparison of Causal Inference
Performance
In the lung cancer clinical dataset, the causal
effect estimation results of various methods are
shown in Table 1. The estimation bias of the
RCI-Model (-0.023) is only 11.6% of that of the
PSM method (-0.198), the RMSE is 18.7%
lower than that of the DDL method, and the E-
value reaches 1.92, significantly higher than
other methods, indicating its advantage in
eliminating hidden confounding. This result is
consistent with the research conclusions of
Fudan University in the ADNI database,
verifying the effectiveness of spectral
transformation debiasing technology in
biomedical data [6].
Table 1. Comparison of Causal Inference

Performance of Various Methods
Method Estimation

Bias
(BIAS)

Root Mean
Square Error
(RMSE)

E-value

OLS -0.245 0.312 1.03
PSM -0.198 0.256 1.21
DL -0.087 0.093 1.56
DDL -0.052 0.092 1.68

RCI-Model -0.023 0.075 1.92
3.3.2 Cost Control and Efficiency Optimization
Effects
In the single-center scenario, the optimization
scheme based on the RCI-Model reduces the
average hospitalization cost of the Cardiology
Department from 18,620 yuan to 15,180 yuan, a
decrease of 18.7%; the bed turnover rate
increases from 1.2 times/month to 1.48
times/month, an increase of 23.4%; the
treatment effective rate remains at 92.3%, an
increase of 1.2 percentage points compared
with before optimization. The cost reduction
mainly comes from two aspects: first,
eliminating "high-cost and low-efficacy"
treatment plans through causal identification
(e.g., the usage rate of a certain imported
antibiotic decreases from 32% to 11%); second,
optimizing the inspection process, reducing
37% of duplicate inspection items.

In the cross-institutional scenario, after 12
hospitals constructed a collaborative
optimization model through federated learning,
the total regional healthcare cost decreased by
15.2%, and the proportion of consultations in
primary medical institutions increased from
38% to 46%, achieving the hierarchical
diagnosis and treatment goal of "severe diseases
treated in hospitals, minor illnesses treated in
communities." This result verifies the
practicality of the causal optimization model in
resource allocation, and its effect is superior to
resource allocation methods based solely on
administrative orders.
3.3.3 Model Robustness Test
In the data distribution shift test, after adding
20% low-quality data from primary hospitals
(containing more noise and missing values) to
the training set, the performance changes of
various methods are shown in Table 2. The
ΔACC of the RCI-Model is only 8.7%,
significantly lower than that of the DL method
(23.5%) and the PSM method (31.2%),
indicating that through the dual mechanism of
spectral transformation and causal graph
pruning, it effectively reduces the interference
of noisy data on the model. In terms of cross-
institutional adaptation error, the prediction
error of the RCI-Model in new hospitals is only
0.062, meeting the requirements of clinical
decision-making [7,8,9].
Table 2. Comparison of Model Robustness

After Data Distribution Shift
Method Performance

Degradation Rate
(ΔACC)

Cross-
Institutional

Adaptation Error
OLS 42.3% 0.187
PSM 31.2% 0.145
DL 23.5% 0.098
DDL 15.6% 0.081

RCI-Model 8.7% 0.062

4. Strategies and Recommendations

4.1 Cost Control Strategies Based on Robust
Causal Inference
In terms of cost control, it is necessary to break
through the limitations of traditional
administrative control and construct a four-
dimensional precision strategy. First, precise
price regulation: relying on the robust causal
model to define a reasonable cost range,
establishing a national healthcare cost database,
and using robust quantile regression to
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distinguish cost differences between eastern,
central, and western regions and hospitals of
different levels; adopting a "cost-plus +
efficacy evaluation" model for innovative drugs,
balancing R&D incentives and patient burden
through the robust difference-in-differences
model, and controlling the circulation markup
rate within 15% through robust outlier detection.
Second, differentiated DRG/DIP policies:
classifying diseases according to the results of
robust cluster analysis, increasing the payment
standard for complex diseases by 15%-20%
with a severe disease supplementary
mechanism, providing a 10% payment premium
for primary hospitals accepting common
diseases, and dynamically evaluating and
adjusting every quarter using robust DID. Third,
full-process cost supervision: establishing a
"cost-efficacy" correlation model, identifying
ineffective costs using robust propensity score
matching; promoting the integrated model of
clinical pathways and cost control, with
supporting robust causal-driven intelligent
medical insurance review. Fourth, regional
collaborative cost control: identifying core
factors of regional costs through the robust
spatial econometric model, monitoring over-
treatment in eastern regions and optimizing
procurement costs in western regions, forming
cross-regional procurement alliances to reduce
the price of medical consumables, while
prioritizing talent training in western regions
and technology transfer from eastern regions to
improve the equipment utilization rate of
county-level hospitals in western regions.

4.2 Recommendations for Clinical Efficiency
Optimization Based on Robust Causal
Inference
Optimizing clinical efficiency needs to focus on
core bottlenecks and implement a four-
dimensional improvement plan. In process
restructuring, priority should be given to
breaking through the bottlenecks of inspection
appointment and result transmission, building a
regional centralized appointment platform to
reduce the inspection appointment time from
2.3 days to 0.5 days, and realizing cross-
hospital mutual recognition of inspection
results through blockchain technology;
implementing "general practitioner-specialist"
joint clinics to shorten referral time. In resource
sinking, implement a three-dimensional strategy
of "talent-technology-patients": train 5,000

general practitioners annually in western
regions, ensuring that the salary of primary care
doctors is not lower than the average level of
local public institutions; require doctors in
Grade A tertiary hospitals to conduct at least 4
days of outpatient services in primary
institutions every month, coupled with
differences in medical insurance reimbursement
incentives to increase the primary diagnosis rate
accordingly. Technology empowerment should
be promoted in phases according to the priority
of causal effects: achieve full coverage of
electronic medical record interoperability and
teleconsultation in county-level hospitals within
1-2 years, promote AI-assisted diagnosis
technology within 3-4 years, and construct an
intelligent clinical platform in the long term,
with effects evaluated using robust models
every six months. In the incentive mechanism,
take "average daily effective clinical time (30%),
patient satisfaction (25%), readmission rate
(25%), and cost control rate (20%)" as core
indicators, focusing on satisfaction in primary
institutions and the volume of complex case
diagnosis and treatment in Grade A tertiary
hospitals [10,11].

4.3 Implementation Guarantee Measures
To ensure the implementation of the strategies,
it is necessary to consolidate the four major
guarantees of policy, technology, talent, and
ethics. At the policy level, issue the
"Specifications for Healthcare Data Quality
Management," establish a robust evaluation
system for medical policies, and incorporate
causal analysis into hospital grade evaluation.
In technological innovation, build a national-
level healthcare big data center and adopt
federated learning to ensure security. In talent
training, add healthcare data analysis majors in
universities, train 50,000 in-service personnel
annually, and introduce high-end experts.
Ethically, establish a data use review
mechanism, implement de-identification
processing and patient informed consent
systems, and balance data utilization and
privacy protection. These measures will
promote the in-depth application of robust
causal inference and assist the high-quality
development of the healthcare industry.

5. Conclusion and Outlook
The Robust Causal Inference Model (RCI-
Model) proposed in this study effectively solves
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the hidden confounding problem in high-
dimensional healthcare data through the dual
mechanism of spectral transformation debiasing
and multi-scale causal graph modeling, and its
causal effect estimation accuracy and
robustness are superior to existing methods.
The large-scale optimization framework based
on this model reduces the average
hospitalization cost by 18.7%, increases the bed
turnover rate by 23.4% in 530,000 medical
samples, and shows good adaptability in cross-
institutional scenarios, verifying the feasibility
and superiority of the integration of causal
inference and optimization algorithms in
healthcare systems. The research indicates that
robust causal inference can provide reliable
technical support for healthcare cost control and
clinical efficiency optimization, and its
integration with federated learning provides a
new solution for the implementation of
hierarchical diagnosis and treatment policies,
with important theoretical value and clinical
application prospects.
Future research can focus on the following
three aspects: first, improving model
generalization: developing nonlinear spectral
transformation technology based on deep
learning to adapt to complex nonlinear
healthcare scenarios such as tumor progression
and chronic disease management, breaking
through the application limitations of current
linear models; second, constructing dynamic
optimization capabilities: integrating
reinforcement learning algorithms to capture
dynamic factors such as public health
emergencies and medical policy adjustments in
real time, achieving agile response in resource
allocation; third, improving the clinical
implementation system: collaborating with
medical institutions to build a closed-loop
mechanism of "model training - clinical pilot -
effect feedback," optimizing model parameters
for special departments such as pediatrics and
emergency, and promoting the standardization
and localization of robust causal analysis
toolkits to reduce the application threshold for
primary medical institutions, helping modern
healthcare benefit a wider group.
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