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Abstract: Cardiovascular diseases, as the
leading global health threat, involve a
complex interactive network of genetic
variations, phenotypic characteristics and
drug effects in their pathogenesis. Traditional
research methods are limited by the
singularity of data dimensions and the
concealment of relationships, making it
difficult to systematically analyze the
multi-level associations of genes, phenotypes,
and drugs (G-P-D). Graph Neural Network
(GNN) provides a new paradigm for mining
G-P-D networks of cardiovascular diseases by
integrating non-Euclidean structured data.
This article systematically expounds the value
of GNN in cardiovascular disease research
from three dimensions: theoretical
framework, application scenarios, and
challenges. It focuses on analyzing its
application logic in gene function analysis,
phenotypic association discovery, and drug
repositioning, providing theoretical support
for the construction of a precision medical
decision-making system.
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1. Introduction
Cardiovascular diseases are the chronic disease
group with the highest mortality rate worldwide,
covering multiple subtypes such as coronary
heart disease, heart failure, and hypertension [1].
Its pathological mechanism is highly complex,
involving multiple interactions such as genetic
variation, environmental exposure, lifestyle and
drug intervention [2]. For instance, the
CYP2C19 gene polymorphism significantly
alters the efficacy of antiplatelet therapy by
influencing the metabolic efficiency of
clopidogrel [3]; APOE gene variations are
closely related to the stability of atherosclerotic
plaques and the reactivity to statins [4]. Such

associations can only be revealed by integrating
genotype, clinical phenotype and drug response
data. However, traditional research methods are
limited by the singularity of data dimensions and
the concealment of relationships, making it
difficult to systematically analyze the multi-level
network characteristics of gene - phenotype -
drug.
The traditional research paradigms mainly
include genomic association analysis, phenomics
analysis and drug clinical trials. Although
GWAS has identified a large number of gene loci
related to cardiovascular diseases, it can only
explain part of the genetic risk. The remaining
Missing Heritability may stem from
gene-environment interaction or epigenetic
modifications [5]. Phenomics research focuses
on the relationship between clinical indicators
and prognosis, but it is difficult to capture the
dynamic associations among phenotypes and
gene regulatory pathways [6]. Due to the limited
sample size and individual heterogeneity in drug
clinical trials, it is difficult to comprehensively
evaluate the efficacy and safety of drugs. This
kind of method is essentially a
"single-dimensional slice" analysis, lacking the
ability to model the overall structure of the
G-P-D network, resulting in the key correlations
being easily overlooked.
Graph neural networks, as a deep learning
framework for processing non-Euclidean
structured data, can effectively model
heterogeneous relationships in G-P-D networks
through node embedding and message passing
mechanisms [7]. Its core advantage lies in
supporting the unified representation of multiple
types of nodes (genes, proteins, clinical
indicators, drug molecules), and revealing the
implicit biological associations through edge
weight learning [8]. For instance, in
hypertension research, GNN can integrate gene
expression data, blood pressure monitoring
records, and antihypertensive drug information
to construct a dynamic network of "genes -
blood pressure fluctuations - drug dosage",
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providing a basis for individualized medication
[9]. In addition, GNN can adapt to the
time-varying characteristics of network structure
during the progression of cardiovascular diseases,
such as the systematic changes in gene
expression profiles and drug reactivity during
the pathological evolution of myocardial
infarction patients from the acute phase to the
chronic phase [10].
This paper systematically explores the
application value of GNN in the mining of
G-P-D networks for cardiovascular diseases
from three aspects: theoretical framework
innovation, application scenario expansion, and
breakthrough of technical challenges.
Theoretically, analyze how GNN ADAPTS to
the characteristics of cardiovascular data through
heterogeneous graph modeling, attention
mechanisms, and dynamic graph learning; At the
application level, the focus is on elaborating the
technical logic in the localization of pathogenic
genes, the discovery of phenotypic associations,
and drug relocalization. At the challenge level,
core issues such as data heterogeneity, model
interpretability, and difficulties in dynamic
modeling are discussed. This study aims to
provide methodological support for precision
medical decision-making and promote the
paradigm transformation of cardiovascular
disease research from "single-dimensional
association" to "networked reasoning".

2. The Theoretical Basis of Graph Neural
Networks and Their Compatibility with
Cardiovascular Diseases

2.1 Core Mechanisms and Variants of GNN
Graph neural networks update the target node
embedding by iteratively aggregating the
information of neighboring nodes. The core idea
lies in encoding the network structure
information into the node representation. The
basic GNN model integrates neighbor features
through mean aggregation or Max pooling
operations, but such methods assume that all
neighbor nodes are equally important and have
difficulty handling the complexity of
heterogeneous nodes and edges. In view of the
particularity of cardiovascular disease data,
GNN has derived multiple variants to meet the
needs of different scenarios.
Graph attention networks can analyze the
asymmetric relationship between transcription
factors and target genes in gene regulatory

networks by dynamically allocating the weights
of neighboring nodes through the introduction of
an attention mechanism. For instance, in the
research on the regulation of genes related to
myocardial hypertrophy, the GAT model can
identify the differentiated effects of key
transcription factors (such as GATA4) on
downstream target genes (such as MYH7), and
its attention weight distribution is highly
consistent with the experimentally verified
regulatory intensity. Heterogeneous graph neural
networks support the joint modeling of multiple
types of nodes and edges, and reveal the
multi-level regulatory pathways of
"gene-miRNA-phenotype" in cardiovascular
diseases by defining meta-paths. For example, in
coronary heart disease research, HGNN can
integrate gene, miRNA and clinical phenotype
data, and discover the mechanism by which
miR-155 affects the inflammatory response by
regulating the TLR4 gene through the
"gene-miRNA-phenotype" meta-pathway.
Temporal graph neural networks combined with
recurrent neural networks (RNN) or Transformer
architectures can simulate the dynamic evolution
of network structures during the progression of
cardiovascular diseases. For instance, during the
pathological evolution of hypertensive patients
from the compensatory stage to the
decompensated stage, TGNN can capture the
temporal correlations of gene expression profiles
(such as ACE genes), blood pressure fluctuations,
and drug dosages (such as ACE inhibitors),
providing a basis for individualized medication
adjustments. In addition, graph contrastive
learning optimizes the initial embedding through
self-supervised tasks (such as node comparison
and subgraph comparison), alleviating the
scarcity of cardiovascular data annotation. In the
study of heart failure classification, the GCL
model was pre-trained and embedded using
unlabeled electronic health record data, and its
performance in subsequent classification tasks
was significantly better than that of traditional
supervised learning.

2.2 Structural Characteristics of G-P-D
Network in Cardiovascular Diseases
The G-P-D network of cardiovascular diseases
presents three major characteristics:
multimodality, sparsity and dynamics.
Multimodal nature is reflected in the fact that
node types cover DNA sequences, metabolite
concentrations and chemical structures, while
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edge types include gene co-expression, protein
interactions and drug-target binding. For
example, in the coronary heart disease-related
network, there are three types of edges
simultaneously: gene-gene interaction,
gene-phenotypic association, and drug-gene
regulation. Sparsity is manifested in the fact that
only about 2% of gene pairs in the real
biological network have functional associations,
which makes traditional association analysis
vulnerable to false positive interference. The
dynamics are reflected in the systematic changes
of the network structure during the disease
progression, such as the reconstruction of the
gene expression profile in patients with heart
failure from the compensated stage to the
decompensated stage.
GNN ADAPTS the above features through
multi-channel embedding, sparse connection
optimization and dynamic graph learning
mechanisms. Multi-channel embedding allocates
independent embedding spaces for different
types of nodes and achieves cross-modal
information fusion through shared weight layers.
Sparse connection optimization employs
DropEdge or attention masking techniques to
suppress the interference of meaningless edges
on model training. Dynamic graph learning
combined with recurrent neural networks or
Transformer architectures captures the
time-varying patterns of network structures, such
as simulating the dynamic interaction between
inflammatory factors and lipid metabolism
during the progression of atherosclerotic
plaques.

3. Application of GNN in Gene Function
Analysis of Cardiovascular Diseases

3.1 Localization and Functional Annotation of
Pathogenic Genes
Although traditional genomic association
analysis has identified a large number of gene
loci related to cardiovascular diseases, it can
only explain part of the genetic risk. The
remaining "deletion heritability" may result from
gene-environment interaction or epigenetic
modifications. GNN can enhance the efficiency
of pathogenic gene discovery by integrating
multi-omics data. Its application logic includes
three steps: constructing the gene-phenotype
isomerism map, embedding propagation and
clustering, and functional enrichment
verification.

When constructing the gene-phenotype
isomerism map, gene nodes are connected to
clinical phenotype nodes, and the edge weights
are determined by co-localization analysis or
Mendelian randomization. For instance, in the
study of hypertrophic cardiomyopathy,
heterogeneous graphs can integrate genomic,
transcriptomic and imaging data to form
complex networks containing thousands of
nodes and edges. In the embedding propagation
stage, GNN learns the low-dimensional
representation of gene nodes through multi-layer
message passing, enabling function-related
genes to aggregate in the embedding space.
Cluster analysis can identify core gene modules,
such as the MYH7 gene and its regulatory
network. Functional enrichment verification
compares the clustering results with the GO or
KEGG pathway databases to confirm the
biological significance of the module, such as
finding that MYH7 causes myocardial cell
contractile dysfunction by affecting the activity
of calcium ion channels.

3.2 Causal Inference of Gene-phenotypic
Associations
The SNP loci discovered by GWAS are mostly
located in non-coding regions, and their
pathogenic mechanisms need to be transmitted
through intermediate phenotypes. GNN can be
combined with causal discovery algorithms to
construct a causal chain model of "gene -
intermediate phenotype - disease". Its technical
approaches include conditional independence
testing, causal direction identification and
counterfactual reasoning.
The conditional independence test utilizes the
node representation embedded in GNN to
calculate the conditional mutual information
between genes and phenotypes and screen
potential causal pairs. Causal direction
identification determines the direct or indirect
impact of genes on phenotypes through the
distribution of attention weights, such as
identifying the pathway by which the APOE
gene affects plaque stability by up-regulating
LDL receptor expression. Counterfactual
reasoning simulates the phenotypic changes after
gene editing to verify the robustness of the
causal relationship. In the study of
atherosclerosis, this model reveals the causal
association between the APOE gene and plaque
stability, providing a new target for targeted
therapy.
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4. Application of GNN in the Discovery of
Phenotypic Associations in Cardiovascular
Diseases

4.1 Integration and Dimensionality Reduction
of Phenome Data
Cardiovascular disease phenotypes cover
multi-dimensional indicators such as structure,
function and biomarkers. Traditional methods
such as PCA are difficult to handle nonlinear
relationships, while GNN can achieve precise
division of phenotypic space through nonlinear
embedding. Its methodological innovations
include multi-view graph convolution and
self-supervised pre-training.
Multi-view convolution is used to construct
independent subgraphs for different phenotypic
types. For example, imaging indicators and
biochemical indicators are modeled separately,
and information is fused through a shared weight
layer. This strategy can preserve the specificity
of each modal while exploring cross-modal
associations. Self-supervised pre-training utilizes
contrastive learning tasks to optimize the initial
embedding, such as predicting missing
phenotypic values or reconstructing part of the
observed data, thereby enhancing the
performance of downstream classification tasks.
In the phenotypic typing study of heart failure,
the GNN model divided patients into two
subgroups, namely "high output type" and "low
output type", and the prognosis difference was
significantly better than that of the traditional
K-means clustering.

4.2 Association Modeling of Phenotypic and
Drug Responses
There is significant heterogeneity in patients'
responses to cardiovascular drugs. GNN can
construct a "phenotypic - drug - gene" ternary
relationship network to predict individualized
medication regimens. Its modeling process
includes constructing patient-drug heterogeneous
graphs, meta-path analysis and response
prediction.
When constructing patient-drug isomerism
graphs, patient nodes connect medication
records with clinical phenotypes, such as dosage,
treatment course, and blood pressure changes.
Meta-pathway analysis defines pathways such as
"patient - medication - phenotypic change -
medication adjustment", and extracts high-order
association features. Response prediction

predicts the efficacy or risk of adverse reactions
of patients to specific drugs through graph
classification tasks. In anticoagulant therapy, this
model can identify patients carrying CYP2C9*3
gene variations in advance, avoiding the risk of
bleeding caused by excessive warfarin.

5. Application of GNN in the Relocation and
Development of Cardiovascular Drugs

5.1 Expansion of Drug-Target-Disease
Networks
Traditional drug development relies on the linear
paradigm of "one target - one disease", while
GNN supports the systematic exploration of
multi-target - multi-disease networks. Its
technical implementation includes the
construction of drug similarity networks,
heterogeneous network alignment and path
enrichment analysis.
Drug similarity networks calculate the similarity
between drugs based on chemical structure or
mechanism of action, for example, by
constructing networks through ECFP
fingerprints or target spectrum similarity.
Heterogeneous network alignment aligns drug
networks with disease gene networks to identify
cross-indication medication opportunities. Path
enrichment analysis was used to extract
drug-target-gene-disease pathways to verify the
biological rationality of the relocation hypothesis.
In the study of beta-blockers, by analyzing their
interaction with the heart failure gene network, it
was found that carvedilol could improve
myocardial remodeling by regulating the
expression of the ADRB1 gene. This mechanism
was subsequently confirmed by clinical trials.

5.2 Prediction of Synergistic Effects of Drug
Combinations
Cardiovascular diseases often require
combination therapy. GNN can predict the
optimal combination plan by simulating the
cascade effect of drugs, targets and phenotypes.
Its prediction framework includes the
construction of drug combination maps,
collaborative score calculation and virtual
screening.
When constructing a drug combination map,
drug nodes are connected by sharing targets or
phenotypic effects. The calculation of
collaborative scoring is based on the
quantification of the combination synergy of
embedding similarity and path length, for
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example, giving priority to drug pairs that act on
the same pathway through different mechanisms.
Virtual screening prioritizes the verification of
the in vitro activity of high-scoring combinations,
reducing experimental costs. In the treatment of
hypertension, this model predicts that the
combination of amlodipine and valsartan can
achieve better blood pressure control by
synergistically inhibiting the RAAS system and
calcium channels. Subsequent clinical studies
have verified that its antihypertensive effect is
significantly superior to that of monotherapy.

6. Challenges and Future Directions

6.1 Current Limitations
GNN faces three major challenges in the
application of cardiovascular diseases: data
heterogeneity, insufficient interpretability and
difficulty in dynamic modeling. Clinical
phenotypic data have missing values and noise,
and genomic data have batch effects. It is
necessary to develop robust graph data
augmentation methods. The "black box" feature
of GNN limits its application in clinical
decision-making, and it is necessary to combine
SHAP values or attention heat maps to enhance
model transparency. During the progression of
cardiovascular diseases, the network structure
evolves rapidly, and the existing TGNN models
have limited ability to capture long-term
dependencies.

6.2 Development Trends
Future research on GNN will focus on
multimodal fusion, causal reinforcement
learning and applications of federated learning.
Multimodal fusion integrates emerging data such
as single-cell sequencing and spatial
transcriptomics to construct higher-resolution
G-P-D networks. Causal reinforcement learning
combines counterfactual reasoning and
reinforcement learning to optimize dynamic
treatment strategies. Federated learning enables
the collaborative training of cross-institutional
GNN models under the premise of protecting
patient privacy, promoting large-scale clinical
validation.

7. Conclusion
Graph neural networks, with their powerful
capabilities in heterogeneous data integration
and relationship reasoning, provide a
revolutionary tool for the mining of

gene-phenotypic-drug networks in
cardiovascular diseases. From pathogenic gene
localization to individualized medication
prediction, GNNS are reshaping the research
paradigm of cardiovascular precision medicine.
In the future, with the accumulation of
multimodal data and algorithm innovation, GNN
is expected to play a core role in the entire chain
of cardiovascular disease prevention, diagnosis
and treatment, and ultimately achieve the clinical
transformation of "gene-phenotypic-drug" linked
decision-making.
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