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Abstract:In modern battlefield environments,
precise target monitoring in complex terrains
faces challenges of insufficient coverage and
low resource utilization efficiency with
traditional multi-sensor deployment
strategies. This paper proposes an improved
Particle Swarm Optimization (PSO)-based
multi-sensor cooperative deployment
algorithm for battlefield target monitoring,
aiming to enhance the overall effectiveness of
monitoring systems through intelligent
optimization and cooperative sensing. First, a
multi-sensor joint detection probability
model is constructed, establishing a statistical
sensing model incorporating parameters such
as sensing radius and adjustment coefficients.
Second, a PSO algorithm improved with
adaptive inertia weight is introduced,
enabling global optimization of sensor
positions by dynamically adjusting particle
search strategies. Finally, a priority coverage
strategy for key areas is designed to ensure
100% monitoring coverage in critical target
regions. Simulation experiments demonstrate
that compared with random deployment
algorithms and standard PSO algorithms, the
proposed algorithm increases the effective
coverage of monitoring areas from 51.51% to
66.44%, maintains stable 100% coverage in
key areas, and significantly enhances target
monitoring  capabilities and resource
utilization efficiency in complex battlefield
environments under the same resource
conditions, providing an effective solution for
multi-sensor cooperative deployment.

Keywords: Multi-Sensor Cooperative
Deployment; Battlefield Target Monitoring;
Improved Particle Swarm Optimization

(PSO)

1.Introduction

In numerous fields such as modern battlefield
situational = awareness, target monitoring,
intelligence  collection, and  operational
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decision-making, = multi-sensor  cooperative
deployment technology serves as the core
component for acquiring battlefield information,
achieving precise monitoring, and enabling
effective decision-making. The scientificity and
rationality of deployment strategies directly
determine the overall effectiveness of
monitoring systems. Traditional multi-sensor
deployment methods have been widely applied
in battlefield monitoring, including random
deployment strategies [1], uniform distribution
deployment [2], geometry-based optimization
deployment [3], and heuristic algorithm-based
deployment [4]. However, when facing complex
battlefield environments (such as complex and
changeable terrain, irregular target distribution,
and priority coverage requirements for key
areas), traditional single-model deployment
methods often result in insufficient monitoring
coverage and low resource utilization efficiency
due to their inability to adapt to dynamic
battlefield changes in real-time [5]. Against this
backdrop, cooperative deployment technology
based on intelligent optimization algorithms,
which adaptively adjusts sensor positions, has
become the core solution for addressing the
challenges of target monitoring in complex
battlefields [6].

In recent years, the application of Particle
Swarm Optimization (PSO) algorithms in
multi-sensor deployment has conducted in-depth
research focusing on algorithm improvement
and deployment efficiency enhancement.
Reference [7] constructed a multi-sensor
deployment framework based on the standard
PSO  algorithm, significantly  improving
deployment accuracy in simple environments by
adjusting inertia weight and learning factors.
Reference [8] combined PSO with genetic
algorithms, enhancing adaptability to complex
terrains through hybrid optimization strategies.
Reference [9] proposed a lightweight PSO
structure based on fuzzy logic, reducing
resource consumption while maintaining
deployment effectiveness by  decreasing
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computational complexity. Reference [10]
integrated neural network theory, improving
deployment accuracy by adaptively adjusting
algorithm parameters. Reference [11] designed a
dynamic PSO algorithm that dynamically
adjusts search strategies based on real-time
environmental changes, increasing monitoring
coverage by 15% while reducing computational
load by 25%. Reference [12] combined PSO
with  multi-objective  optimization theory,
constructing a multi-sensor deployment model
that  balances coverage and  resource
consumption. These studies indicate that while
PSO technology enhances adaptability to
complex environments, it still faces challenges
in balancing convergence speed and global
search capability.

Traditional single-sensor monitoring technology
is limited by its single sensing range and
environmental noise (such as electromagnetic
interference and changing meteorological
conditions), often resulting in unsatisfactory
monitoring performance that fails to meet the
high-precision monitoring requirements of
modern battlefields. Although multi-sensor
cooperative technology can improve monitoring
coverage by optimizing sensor spatial
distribution (such as master-slave platform
cooperation and priority coverage of key areas)
[13], information redundancy and uneven
resource allocation among sensors (such as
resource waste caused by overlapping sensor
positions) still require optimization. The particle
swarm optimization algorithm in intelligent
optimization theory provides a new approach to
address this issue—by simulating swarm
intelligence behavior, it can dynamically
optimize sensor position layout, avoiding the
neglect of global optimality by traditional
geometric optimization methods.

This paper proposes an improved PSO-based
multi-sensor cooperative deployment algorithm
for battlefield target monitoring, addressing the
complexity of battlefield environments and the
requirements for multi-sensor cooperative
deployment. By constructing a multi-sensor
joint detection probability model, precise
evaluation of monitoring coverage is achieved.
Combined with a PSO algorithm improved with
adaptive inertia weight, dynamic optimization of
sensor position layout is realized. Utilizing a
priority coverage strategy for key areas
enhances monitoring capabilities for critical
targets, providing theoretical support and
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technical solutions for multi-sensor cooperative
deployment in complex battlefield
environments.

2.Node Sensing Model

Although traditional probabilistic sensing
models have certain practical applications,
considering the performance fluctuations of
multi-sensors under different environments and
operating conditions, improvements are urgently
needed, leading to the emergence of statistical
models. First, it is essential to precisely define
the sensing radius of multi-sensors, which
delineates the approximate range of their
effective detection. Simultaneously, clarifying
the coordinates of target points enables
knowledge of the monitoring object's location,
while determining node coordinates lays a solid
foundation for constructing data association and
transmission systems. These three elements
complement each other. Based on these key
parameters, researchers have derived the
expression for multi-sensor detection probability

in statistical models through extensive
experiments, data collection, and complex
mathematical derivations.

0,dzr +r;

_ -1a”
C=<e™ r,—r;<d<r +r;

Ld<r —r
)
’s is the adjustment coefficient, representing the
sensing uncertainty of multi-sensor

nodes; 4 , # are measurement performance
parameters, which are adjustable and have value
ranges;Define @ | where the detection
probability changes in a negative exponential

relationship with distance.
ChA

|

Aupqeqoid uopaaag

0 — P d
Distance(km)
Figure 1. Schematic Diagram of Detection
Probability Variation with Distance in
Statistical Model
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2.1 Analysis of Optimization Indicators

In complex detection scenarios, multi-platform
cooperative detection plays a crucial role, while
information uncertainty has also become an
unignorable challenge. Based on precise
directed models, in-depth exploration of
multi-sensor deployment algorithms has become
the key to breaking the impasse. This algorithm
research focuses on optimization indicators. The
sensing radius is set to 50 km, the adjustment
coefficient is 20 km, and the position
coordinates of a certain node are at (80 km, 50
km). The monitoring area is defined as 100 km
x 100 km. Meanwhile, parameters A = 0.1 and 8
= 0.7 are taken, and the platform carrying
multiple sensors moves towards the negative
semi-axis of the X-axis. The simulation results
of the multi-sensor node statistical model are
shown in Figure 2.
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Figure 2. Directed Multi-Sensor Node
Statistical Model
As shown in Figure 2, the detection probability
is closely related to the distance between the
target point and the node. At the node position,
due to the most concentrated detection
capability of multi-sensors, the probability of

target detection reaches the maximum value of 1.

Within the sector-shaped area, influenced by the
performance  radiation of  multi-sensors,
although the detection probability is not as high
as at the node, it still maintains a value greater
than 0, ensuring no potential targets are missed.
The closer the target point is to the node, the
greater the detection probability obtained;
conversely, the farther away, the smaller the
probability, showing an obvious gradient
change.
More

detection

importantly, to accurately measure

Cu threshold
is specifically defined. When

the target point detection probability Crois
greater than this value, it can be determined as
an effectively covered point:

effectiveness,
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c, =2C, (2)
In the field of multi-sensor detection, when a
region meets the conditions set by a specific
formula, it is recognized as an effectively
covered region. The region's effective coverage

rate R, based on this definition reflects the
proportion of effectively covered regions within
the monitoring range. The formula is as follows:

area[[g A,]n M ]

area(M ) (3)

R, =
U4 . .
“ represents the union of multi-sensor
coverage areas; M represents the entire
o (R

monitoring area; represents the
intersection of the wunion of multi-sensor
coverage areas and the monitoring area;

areu{[g A,]mMJ ; .

, s the area of the effectively
covered region; “7¢«(M) jg the area of the
entire monitoring region.

The target monitoring area is defined as 100 km
x 100 km, with the x-coordinate ranging from
[20 km, 50 km] and the y-coordinate ranging
from [30 km, 70 km]. The key area, where
critical targets are highly likely to be hidden, is
the priority focus range for monitoring resources.
In the single-sensor detection scenario, the
corresponding model is shown in Figure 3.
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Figure 3. Key Area (Left) and Single Sensor
(Right) Node Detection Statistical Model
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2.2 Construction of Multi-sensor Cooperative
Deployment Algorithm with Improved PSO
The Ant Colony Optimization (ACO) algorithm
is based on simulating the cooperative behavior
among ant colonies. During foraging, ants leave
pheromones to guide their companions toward
food sources, and the algorithm uses this
mechanism to find optimal solutions. However,
its positive feedback process results in
prolonged solution time, making it difficult to
quickly provide effective solutions in scenarios
with high real-time requirements. In comparison,
the Particle Swarm Optimization (PSO)
algorithm is based on the swarm intelligence
behavior of bird flocks during predation. Its
principles are easy to understand, it involves
fewer parameters, has fast convergence speed,
and can efficiently approach optimal solutions.
In view of this, this paper selects the PSO
algorithm, aiming to optimize multi-sensor
deployment and enhance the overall
effectiveness and response speed of monitoring
systems.

2.2.1 Principle of PSO Algorithm

Particles correspond to potential solutions of the
problem to be solved and have matching fitness
values. During algorithm execution, particles
explore optimal solutions by continuously
updating their positions through iterations. The
particle swarm consists of n massless particles,
possessing two key attributes: velocity and
position. These particles can freely move and
navigate in a D-dimensional space, leveraging
swarm intelligence to collaboratively and
efficiently discover the optimal solution to the
problem. The iterative state of particles is:

x, @+ =x () +v, ;(£+1)

pbest, (1)

“
represents the best position found

so far for the -th particle, while gbestj O is
the best position found so far among all
particles.

In particle swarm optimization, the memory
term causes the particle's velocity to be
significantly influenced by the velocity of parent
particles, enabling particles to gradually
approach the optimal solution in a directed
manner. The inertia weight factor ® can
effectively enhance local search capability and
precisely locate the optimal solution; conversely,
a larger ® improves global search capability.
Learning factors ci and c2 ensure that particles
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balance exploration of new regions and in-depth
exploitation. Adding random numbers r: and r2
between 0 and 1 makes the exploration path
more varied, comprehensively enhancing the
algorithm's optimization performance. A new
guidance mechanism is introduced in the
optimization process of the particle swarm
algorithm, using the particle's neighborhood best
position as the social cognition guide. In
traditional algorithms, particles often adjust
themselves based on the global best position,
while this approach focuses on the local
neighborhood where the particle is located,
extracting optimal position information within it.
During the velocity update phase, particles no
longer solely pursue the global optimum but
instead refer more to nearby particles, a strategy
known as the local best particle swarm
optimization algorithm. In complex and
dynamic search scenarios, this allows particles
to find the optimal path that suits them faster
and more accurately. The velocity update is
defined as:
v ()=, (0 +r; (phest,, —x,, ) +es(nbest, =, )
where nbest, is the best position within the
neighborhood of the i-th particle.
2.2.2 Algorithm Improvement
When applying the Particle Swarm Optimization
(PSO) algorithm to solve problems, its
parameter values must closely align with the
characteristics of the actual problem. Minor
adjustments to different parameters can
significantly impact the algorithm's performance
and efficiency. This chapter optimizes the
standard algorithm by adopting an adaptive
inertia weight coefficient to update particle
states, breaking the limitations of traditional
fixed parameters. This allows particles to
flexibly adjust according to real-time conditions
during the search process, enabling the
algorithm to find optimal solutions when facing
complex and dynamic multi-sensor deployment
challenges. The expression for the adaptive
inertia weight coefficient W is as follows:
(O = 0 ) X (e = o)

® s Je 2= Jang
(Sarg = Fin) Jom
w=
wmax > f; < Afavg
(%)
where L represents the particle's fitness
function value; f”‘o" Jin represent the
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average and minimum fitness, respectively. The
inertia weight typically ranges from [0.4, 0.9].

In the later stages of the search, by reducing the
inertia weight, particles focus on local region
improvement and gradually approach the global
optimal solution. In the early stages of the
search, increasing the inertia weight provides
particles with stronger global search capabilities,
enabling them to quickly locate potential
high-quality regions. The adaptive adjustment
strategy dynamically balances global and local
exploration capabilities according to the search
phase, allowing the algorithm to converge to the
optimal solution at a faster speed. The detailed
operation process of the improved algorithm is
shown in Figure 4.
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Figure 4. Flowchart of Improved Particle
Swarm Optimization Algorithm
In multi-sensor battlefield target deployment
tasks, the improved particle swarm optimization
algorithm ensures precise detection of key areas.
Through optimized search strategies, it enables
efficient allocation of multi-sensor resources
and significantly improves the effective
coverage of key areas. By means of adaptive
adjustment of particle states and reasonable

optimization of parameters, it derives
scientifically reasonable multi-sensor
deployment plans.
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Figure 5. Flowchart of Multi-Sensor
Cooperative Deployment Algorithm based on
Improved Particle Swarm Optimization
The process of the improved algorithm is as

follows:

Step 1: Area Gridding

For precise monitoring, divide the target area
into a uniform grid with a precisely set side
length of 5 km.

Step 2: Multi-sensor Deployment

Adopt a random strategy to place multi-sensors
at grid nodes.

Step 3: Initial Performance Evaluation
Immediately after deployment, calculate the
joint detection probability and coverage rate to
evaluate the detection effectiveness.

Step 4: Algorithm-driven Optimization

Select the coverage rate as the fitness function
and utilize the improved particle swarm
optimization algorithm to perform optimization.
Step 5: Solution Output

When the iteration reaches the maximum
number of times, the output deployment plan is
the optimal solution that meets the monitoring
requirements.

3 Simulation Experiments

3.1 Simulation Experiment of Multi-Sensor
Random Deployment Target Algorithm

In this detection mission, the platform flies
steadily along the negative semi-axis of the
X-axis. The target monitoring area is 100 km x
100 km, with the central 20 km X 20 km area
having extremely high requirements for
detection accuracy and frequency. To achieve
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efficient detection, a battlefield target
cooperative detection system is constructed,
consisting of one master platform leading and
two slave platforms assisting. The master
platform is responsible for overall coordination,
integrating data from all parties, and arranging
tasks, while the slave platforms are specifically
responsible for partial area detection and
auxiliary verification. The system is equipped
with M = 3 multi-sensors, namely Si, Sz, and Ss.
Table 1. Simulation Parameter Table for
Multi-Sensor Random Deployment
Algorithm
Details
Master platform: 70 km,
Slave platforms: 50 km
IAdjustment Coefficient 20km
Adjustable Parameter A 0.1

Parameter
Sensing Radius

Adjustable Parameter 3 10.7
In the simulation experiment, the multi-sensor
positions, sensing ranges, and detection
probabilities are shown in Figure 6 below.
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Figure 6. Schematic Diagram of Sensor
Positions and Sensing Ranges (Left), Sensor
Detection Probabilities (Right)

In the multi-sensor random deployment
experiment shown in Figure 3.29, the detection
probability exhibits severe polarization within
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the area. Some regions, due to multi-sensor
cooperation, are constantly under high-intensity
monitoring; while other regions, being far from
multi-sensors, have detection probabilities close
to zero. The experiment sets the threshold
probability at 0.5. When the value exceeds 0.5,
it indicates that targets can be precisely detected
with high probability. High detection probability
areas and above-threshold areas have equivalent
practical effects, both possessing reliable
detection capabilities. From the overall
effectiveness perspective, the overall coverage
rate of this experiment is 51.51%, and the key
area achieves 100% coverage, ensuring no
critical targets are missed. Fifty Monte Carlo
experiments are conducted for the multi-sensor
random deployment algorithm, and the effective
coverage rates of the monitoring area and key

area are shown in Figure 7.
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Figure 7. Effective Coverage Rate of Random

Deployment Experiment Area
In the multi-sensor random deployment
experiment shown in Figure 7, the effective
coverage rate of the area exhibits extreme
instability across multiple repeated experiments.
The overall coverage rate fluctuates
significantly between 25% and 65%, and in
most cases only maintains around 50%. The
coverage rate of key areas also shows large
fluctuations. The low coverage rate is attributed
to the random deployment method of
multi-sensors. Due to the randomness of their
positions, severe overlap phenomena occur
frequently. Multi-sensors cluster in certain areas,
lacking effective cooperation between sensors
and failing to form complementary advantages
of repeated detection. There is an urgent need to
introduce a cooperative mechanism to reduce
mutual overlap and improve joint detection
probability.
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3.2 Simulation Experiment of Multi-Sensor
Cooperative Deployment Algorithm Based on
Standard Particle Swarm Optimization
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Assume the platform flies along the negative
semi-axis of the X-axis within a square area of
100 km x 100 km. In the center of this area, a 20
km x 20 km region is designated as the key area.
The entire system includes 1 master platform
and 2 slave platforms, equipped with
multi-sensors. In terms of data processing, the
threshold probability is set to 0.5, with 70
iterations performed. The fitness function, as the
key to evaluating system performance, includes

platform and multi-sensor cooperate with each
other, using the threshold probability as the
judgment basis, undergoing 70 iterations, and
continuously optimizing the monitoring and data
analysis tasks for the 100 km x 100 km area,
especially the central 20 km x 20 km key area,
based on the two indicators of the fitness
function with set weights. The fitness function
for standard particle swarm optimization is
constructed as:

two indicators, each assigned corresponding f=kR , +kR

. . . . 17 c_key 2% ¢ all (310)
weights. In this way, during flight, each ) ) s

The simulation parameters are shown in Table 2.
Table 2. Simulation Parameters
Category Details
Multi-sensor Node SensingSensing radius: Master platform 70 km, Slave platforms 50 km,;
Parameters Adjustment coefficient: 20 km; Adjustable parameter A: 0.1;
Adjustable parameter f3: 0.7

Standard Particle SwarmNumber of particles: 30; Inertia weight: 0.9; Learning factor: 2;
Optimization Algorithm Parameters Indicator weight ki: 0.5; Indicator weight ka: 0.5

The multi-sensor positions, sensing ranges, and
multi-sensor detection probabilities are shown in
Figure 8§ below.
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Figure 8. Cooperative Deployment
Experiment of Multi-Sensor Positions and
Sensing Ranges (Left), Multi-Sensor
Detection Probabilities (Right)

Figure 8 clearly illustrates the scenario where
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sensor positions are deployed in a more
distributed manner. This distributed deployment
brings significant advantages, enabling the
utilization rate of multi-sensors to be enhanced,
thereby effectively improving the overall
coverage rate. Figure 3.32 further demonstrates
the variation diagram of coverage rate in an
intuitive manner.
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Figure 9 Multi-sensor positions and sensing
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As can be seen from Figure 9, as the number of
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iterations increases, the effective coverage rate
of the monitoring area improves accordingly. At
the completion of iterations, the effective
coverage rate of the entire monitoring area is
calculated to be 66.44%; the effective coverage
rate of the key area remains consistently at
100% throughout the iteration process.

A balance optimization experiment is conducted
based on the standard algorithm, with the set
conditions kept consistent with those in
Experiment (2). During the iteration process, a
unique calculation method is used to determine
the adaptive weight, thereby achieving dynamic
updates of particle states. This optimization
strategy is visually presented in Figure 9, where
9(a) clearly shows the optimized deployment
situation, allowing observation of key
information such as particle distribution and
position layout. Figure 9(b) focuses on
displaying the detection probability, which
reflects the likelihood of different areas or
targets being accurately detected under the
current deployment.
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Figure 10. Cooperative Deployment
Experiment of Multi-Sensor Positions And
Sensing Ranges (Left), Multi-Sensor
Detection Probabilities (Right)
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According to Figure 10, the two algorithms
demonstrate a high degree of similarity in
multi-sensor deployment positions, indicating
that both algorithms perform excellently in
resource utilization. They are both able to fully
tap resource potential and effectively expand the
joint detection probability. Figure 10, through
the coverage rate variation diagram, presents a
dynamic perspective showing the impact of the
two algorithms on the coverage range under
different times or conditions.

68 ¢

2
4]

@
&

eale buuojuow jo abessnod anipay3
g o
S

-
v}

0 10 20 30 40 50 60 70

Number of iterations
101

100.8

100.6

1004 |

100.2 |-

98.8

99.6

99.4 -

eale Bunoyuow jo abeisnod annday3
=
3

99.2

99L
0 10 20 30 40 50 60 70
Number of iterations

Priority area
Figure 11. Cooperative Deployment Coverage
Rate of Multi-Sensor Positions and Sensing
Ranges (Left), Multi-Sensor Detection
Probabilities (Right)
Figure 11 clearly shows that as the number of
iterations continuously increases, the coverage
rate of the monitoring area steadily rises, and the
coverage rate of the key area reaches 100%. By
combining the analysis of Figures 3.32 and 3.34,
it can be found that both algorithms demonstrate
significant advantages 1in coverage rate
compared to random deployment. Under the
same resource conditions, these two algorithms
can effectively reduce detection blind spots and
greatly improve the comprehensiveness and
accuracy of monitoring. Further comparing the
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standard algorithm with the improved algorithm,
the standard algorithm adopts a constant inertia
weight, while the improved algorithm utilizes an
adaptive inertia weight. Figure 3.35 specifically
provides a visual comparison of the inertia
weighti of these two algorithms.
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Figure 12. Comparative Schematic Diagram

of Fitness Variation During Iteration Process
Figure 12 clearly shows that as the number of
iterations continuously increases, the coverage
rate of the monitoring area steadily rises, and the
coverage rate of the key area reaches 100%. By
combining the analysis of Figures 9 and 11, it
can be found that both algorithms demonstrate
significant advantages 1in coverage rate
compared to random deployment. Under the
same resource conditions, these two algorithms
can effectively reduce detection blind spots and
greatly improve the comprehensiveness and
accuracy of monitoring. Further comparing the
standard algorithm with the improved algorithm,
the standard algorithm adopts a constant inertia
weight, while the improved algorithm utilizes an
adaptive inertia weight. Figure 12 specifically
provides a visual comparison of the inertia
weights of these two algorithms.
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