

A Study on the Integration Path of AIGC in Talent Cultivation for Higher Vocational Craft and Arts Programs

Cong Xie

Shaanxi Artistic Vocational College, Xi'an, Shaanxi, China

Abstract: This work examines the use of AIGC technology in developing abilities for individuals in programs for craft and arts at higher education institutions that focus on work-related training. The analysis first considers the educational features of AIGC technology and the reasons for combining this approach with the changes that programs for craft and arts require when methods become more based on digital systems. The study then shows the main issues that appear in several areas. These areas include the ways that individuals think about the approach, the methods for organizing what students learn, the materials and systems that provide support, and the ways that industry and education work together. Using these findings as a basis, the work presents a path and strategies that focus on changing ideas about education, developing the structure that organizes what students learn in different ways, creating new models for how teaching occurs, and making support systems better. Findings from this research indicate that combining AIGC in deep ways should follow the idea of working together between individuals and technology systems. Using changes to teaching that affect the entire system and development that considers the whole context, the approach can support the development of abilities to create new methods and apply them in practice for individuals working in craft and arts. This allows education for these areas to meet requirements that appear in the current time period that emphasizes systems based on processing information.

Keywords: AIGC; Higher Vocational Craft and Arts; Talent Cultivation; Integration Path; Teaching Reform

1. Introduction

With the development of systems that use artificial intelligence to produce content, these

approaches show significant effects on how individuals create art and how programs provide education in design. Programs at the level following secondary education that focus on craft and arts face particular conditions. These programs provide training to develop skills, and they require methods to include the new technology in their approach to developing individuals. This inclusion relates to changes happening across various industries involved in creative work and design. At this present time, it must be said that the use of systems producing content with artificial intelligence in teaching shows rather limited development, meaning that research looking at ways to integrate such systems remains absolutely necessary. That is to say, investigation must consider how such integration actually occurs, what kinds of challenges appear during the process, and what potential strategies could allow successful implementation. The study looks into the relationship between systems that produce content and the development of individuals within programs focusing on arts and crafts fields. It considers the main challenges that appear, for instance, in practical implementation situations, and also describes possible ways that such integration might be achieved. To put it simply, the work provides valuable theoretical support and practical direction for upcoming changes in educational methods and for improving how programs develop individuals having all the necessary skills.

2. The Rationale for Integrating AIGC into Talent Cultivation in Higher Vocational Craft and Arts Programs

2.1 Technical Features and Educational Potential of AIGC

Using deep learning methods and models trained with large-scale data, content generation shows functions including content production, style transformation, and combining multiple

media types. This approach demonstrates potential in creative art fields. That is to say, it allows for producing design forms along with pattern elements and creating three-dimensional models through language-based interaction^[1]. This happens in ways that show rapid production and adaptation over time. The approach also indicates capacity for representing diverse artistic expressions and combining these in methods reflecting innovation. Simply put, in higher vocational education concerning crafts and arts teaching, content generation using such methods serves as a supportive instrument that enhances creative thinking. It enables utilization across various instructional contexts. For instance, the approach offers means for creating pattern collections in digital formats during instruction centered on heritage crafts. This supports redesign processes showing novelty. To put it another way, within practical exercises, it allows for quickly visualizing proposals for innovative projects. This assists in evaluating such proposals. In theoretical learning situations, the approach permits establishing creative working environments that exist virtually. This reduces limitations that relate to materials and time. These functions expand what becomes possible in creative work. They provide support that appears important for teaching that reflects individual needs. They also support developing competencies in students that relate to technical knowledge that looks forward.

2.2 Transformational Demands in Craft and Arts Talent Cultivation

Programs for vocational training in craft and arts show a need to change from emphasis on skills that follow tradition to emphasis on use that demonstrates innovation. The industry for creative work using digital means presents requirements that differ from previous requirements for individuals entering the field^[2]. These individuals require competence that extends across traditional techniques in craft work and also includes use of tools in digital forms, approaches that combine different areas of study, and work on projects that provide practice. Methods for teaching that follow conventional patterns show limitations in producing creative work at levels that industry requires and in providing outcomes that relate to current industry conditions. The role of AIGC appears significant in this context. This

approach provides means to connect work in traditional craft with current approaches to design. It allows individuals in study to examine traditional elements in digital settings and to change these elements and to develop new forms using these elements. The process develops what could be termed innovation showing fidelity. This describes the capacity to maintain core aspects of tradition while producing interpretations that differ from traditional forms. The development of this capacity allows programs to produce individuals with competence that relates more closely to requirements that industry shows for work in digital forms and to requirements that markets demonstrate for individuals who show creative competence across multiple areas.

2.3 The Necessity of Technological Empowerment and Innovation-Driven Development

The use of approaches that produce content through programs for teaching in programs focusing on making and artistic practice represents a development that requires consideration. This approach shows importance across different areas. First, the method allows instructors and individuals in study to focus less on tasks that occur in multiple instances and more on developing concepts, making judgments about form, and developing main skills that relate to making. The application of programs which create content offers opportunities for shifting teaching methods. Second, this technique influences how people develop new work approaches. Content creation programs provide resources reaching beyond personal experience and suggest patterns different from individual efforts. This then allows establishing methods where people cooperate with programs, and these approaches give ways for individuals to handle problems in adaptive manners. Third, such program use connects to how programs evolve over longer periods. When content generation approaches enter teaching environments, this necessitates adjustments in program components, teaching delivery methods, and assessment procedures. Such changes mean programs can include technological progress and maintain useful features supporting continued relevance. Integrating content producing programs into classroom activities supports how creative practices persist and develop under present

circumstances, that is to say, it helps making and art activities adapt to current conditions^[3].

3. Major Challenges in the Integrative Application of AIGC

3.1 Conceptual Bias and Weak Application Awareness

In work integrating use of systems that produce content from data into programs for developing individuals in higher vocational areas involving craft and arts, differences in understanding appear as a main factor that limits progress. A group of individuals who provide administration and those who provide instruction continue to consider these systems simply as tools, and this approach does not recognize the more important role that these systems show as partners in developing work and as factors that produce change in methods for instruction^[4]. Some individuals also show concern or opposition, and this response relates to worries that technology might disrupt traditional approaches or replace the work that people develop through their own efforts. These differences in understanding result in an overall limitation in awareness of how to apply these systems: methods for instruction often do not show active engagement with these approaches, and development of what courses provide tends to place these systems at the edges rather than positioning them as main elements of what individuals learn. Among groups of individuals in study, understanding of these systems remains limited largely to surface uses or uses for entertainment in producing images; guidance that provides systematic training in comprehensive applications across professional contexts — including work to develop initial ideas, work to refine proposals through multiple stages, and work to simulate craft processes— remains insufficient. The difference between current understanding and what understanding requires creates severe limits on how deep and how wide work to integrate these systems can develop.

3.2 Scarcity of Teaching Resources and Superficial Curriculum Integration

In work integrating use of systems that produce content from data into programs for developing individuals in higher vocational areas involving craft and arts, differences in understanding

appear as a main factor that limits progress. A group of individuals who provide administration and those who provide instruction continue to consider these systems simply as tools, and this approach does not recognize the more important role that these systems show as partners in developing work and as factors that produce change in methods for instruction. Some individuals also show concern or opposition, and this response relates to worries that technology might disrupt traditional approaches or replace the work that people develop through their own efforts. These differences in understanding result in an overall limitation in awareness of how to apply these systems: methods for instruction often do not show active engagement with these approaches, and development of what courses provide tends to place these systems at the edges rather than positioning them as main elements of what individuals learn. Among groups of individuals in study, understanding of these systems remains limited largely to surface uses or uses for entertainment in producing images; guidance that provides systematic training in comprehensive applications across professional contexts — including work to develop initial ideas, work to refine proposals through multiple stages, and work to simulate craft processes— remains insufficient. The difference between current understanding and what understanding requires creates severe limits on how deep and how wide work to integrate these systems can develop.

3.3 Absence of Support Mechanisms and Insufficient Industry–Education Collaboration

Integration that provides clear effects requires support and significant work between industry and education, but these represent main limitations in current practice. In terms of factors within institutions, there is a general lack of policies that encourage faculty to examine teaching approaches using tools that create content, and a lack of dedicated funding and clear means of recognizing work in teaching. At the same time, there is a lack of clear guidance on issues relating to copyright, standards for integrity in work by students, and ethical considerations when using these tools for creation, and this creates hesitancy in both instructors and students. In terms of work

between industry and education, relationships between institutions and technology firms at the leading edge or agencies that focus on design in the digital context remain limited, and stable platforms for sharing technical resources, projects that provide practical training, and clear means of developing individuals together remain underdeveloped. As a result, teaching remains separate from actual applications in industry, and this indicates that the specific abilities students develop do not align with demands in markets that change rapidly. These limitations in systems and in the overall context inhibit advancement in integration that is sustainable and structured in nature.

4. Pathways and Strategies for the Deep Integration of AIGC into Talent Cultivation

4.1 Updating Educational Philosophy and Enhancing Faculty–Student Competencies

Achieving integration of approaches using data generation requires work to establish different educational frameworks and to develop faculty and student skills. Institutions should form a teaching model that emphasizes collaboration between individuals and systems, indicating that these approaches provide means for expanding work in design and for improving the design process. This understanding should appear in programs that develop professional skills. On this basis, programs that differ by group should follow: for faculty, specific training sessions and activities linking institutions with industry should provide means to use these approaches for course development, for guidance on student work, and for supporting design activities; for students, instruction in using these tools, in methods for providing effective input to systems, in considering issues relating to the use of systems for generating data, and in developing critical analysis skills should appear in initial course modules, allowing students to develop from individuals who operate tools to individuals who collaborate with systems in design work. By establishing both understanding of these frameworks and development of skills, factors that limit integration can be reduced, and this provides a basis for programs that develop professional capabilities.

4.2 Restructuring Curriculum Systems and Innovating Pedagogical Models

The main approach to integration requires establishing use of AIGC as the main focus and using this to develop different structures for courses and methods for teaching. The approach to courses should differ from the previous approach that follows a single path. The approach should use separate parts that provide different levels of study under a framework that combines AIGC with the study of craft and arts. The initial courses such as study of intelligent tools and ways to use these for creative work provide the basis. The courses that follow provide study of using AI to create patterns following traditional forms and to develop these in different ways. These also include study of using parameters to develop models for craft work. The final study involves projects that combine work by individuals and machines to develop new approaches and these show increasing difficulty. The method for teaching should use projects as the main focus and should use studios and workshops that include intelligence to support the work. This method should use AIGC in all parts of the teaching. The research part of work uses AIGC to create ideas for starting points and to examine different styles. The part involving development of ideas uses it to show concepts in visual form in rapid ways and to develop multiple versions for different situations. The production part uses it to show how craft processes work and to improve outcomes. This method allows deep use of the technology. It also develops abilities in individuals in study to use thinking that considers all aspects of creative work and that examines and reflects on the work in important ways.

4.3 Perfecting Support Mechanisms and Co-Building a Collaborative Ecosystem

For integration to work well over the long haul, there needs to be backing from institutions and building connections that go beyond the university environment. Inside the university itself, specific measures should set up clear structures. These structures ought to include measures offering support for teaching approaches that involve methods using new technology to create content, to put it simply. The measures should link those teaching approaches to the systems handling reviewing work performance and deciding advancement for people in teaching roles, that is to say. Institutions should also supply funds making

possible the obtaining of necessary tools, for accessing systems that process information, and to develop teaching materials used. Additionally, institutions ought to develop guidelines covering issues about using these approaches for teaching. These guidelines must take into account features specific to different fields and should clarify issues relating to ownership of work, maintaining quality in academic efforts, and using these approaches according to proper conduct principles.

Beyond the university environment, the institution should build connections with groups that are involved in technology development, with organizations operating in areas concerning producing content using innovative approaches, and with representatives from different sectors. That is to say, these connections help in building structures that link various kinds of organizations, supporting the growth of skills and knowledge. Such structures make possible creating projects that offer hands-on experience, for providing access to tools that show current developments, and collections that hold work examples alongside information about knowledgeable individuals. To put it simply, when students engage with projects reflecting actual situations across sectors, they gain abilities to apply these methods effectively, producing valuable outcomes while revealing new ways of tackling issues. This approach enables conditions that offer major resources, that allow accommodating different needs and that reflect how things are done currently in different work sectors.

5. Conclusion

This research looked at the pathways towards integrating AIGC into talent cultivation for higher vocational craft and arts programs, exploring the different routes systematically, and it revealed both the basic theoretical ideas and the pressing need for this integration. AIGC acts as a key driver for professional digital transformation and also for developing innovative abilities in students; therefore, it becomes really necessary to figure out how to use this technology properly and identify the

corresponding difficulties in terms of thoughts about how to use it, teaching practice, and support systems. That is to say, understanding these challenges is crucial for making AIGC work well in education. In response, this study proposed a systematic strategy for renewal including philosophy competency upgrade, curriculum and pedagogy reformulation, and support mechanism enhancement as well as co-construction of a collaborative system. The study found that the integration of AIGC is not a simple addition to educational practice but a reform of educational philosophy and instructional system oriented to human-machine collaboration in a much deeper level. Subsequent practical exploration should remain vigilant to the ethical considerations and technological development.

Acknowledgments

This paper is supported by Research Project on Higher Education Teaching Reform of Shaanxi Vocational College of Arts Human Machine Collaboration: Research on the Integration Path of AIGC in Talent Cultivation of Vocational Arts and Crafts Major Y20250217

References

- [1] Xie B Y. Transformation strategies for talent cultivation in craft and arts design programs of higher vocational colleges under the background of the digital economy[J]. Investment & Cooperation, 2022, (02): 185–186.
- [2] Liu C Y. Strategies for cultivating outstanding talents in higher vocational colleges based on local craft and arts heritage[J]. Theatrical Home, 2020, (32): 176–177.
- [3] Li S H. Research on curriculum teaching reform of design courses based on AIGC technology[J]. Journal of Heihe University, 2025, 16(11): 91–94.
- [4] Zhang F. Research on teaching model reform of product design programs empowered by AIGC technology under digital-intelligent integration[J]. Hunan Packaging, 2025, 40(05): 226–230.