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Abstract: This paper proposes replacing the
feed-forward sublayer (FFN) in BERT with a
spline-based Kolmogorov–Arnold Network
(referred to as Spline-KAN) and designs a
two-stage training procedure to achieve
efficient fine-tuning under a strict parameter
budget. The two-stage procedure is as follows:
first perform warm-up training of the KAN
module (only unfreezing the KAN and the
classification head), then fine-tune under an
extremely small set of trainable parameters
using a BitFit-style step (training only biases
and spline control points). Controlled
experiments were conducted on the eprstmt
subset of FewCLUE using identical random
seeds and training settings (main
configuration: G = 16, intermediate = 512,
single vGPU 48GB). Results show that under
this main configuration the two-stage KAN
method significantly outperforms BitFit-only
on the validation set (mean improvement ≈
21.25 percentage points, paired t(4) = 5.54, p
= 0.0052, Cohen's d ≈ 2.48), and also
significantly outperforms the full-parameter
baseline under the same configuration (mean
improvement ≈ 8.38 percentage points, paired
t(4) = 3.16, p = 0.0341, Cohen's d ≈ 1.41). The
experiments demonstrate that, within an
approximately 0.2M trainable-parameter
budget, structural replacement combined
with staged training can yield substantial
accuracy gains, offering a practical path for
deploying pretrained Transformers in
resource-constrained scenarios.
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1. Introduction (Background and Motivation)
Pretrained Transformers (such as BERT) have
achieved excellent performance across many
downstream tasks, yet full-parameter fine-tuning
imposes high costs in storage, communication,

and deployment-particularly on edge devices or
when multiple models must co-exist. To reduce
fine-tuning costs, the community has proposed
various parameter-efficient fine-tuning (PEFT)
methods, for example BitFit (updating only bias
terms), LoRA (injecting low-rank adapters), and
Adapter modules. These approaches save storage
and transmission overhead by reducing the
number of trainable parameters; however, under
very strict parameter budgets, how to further
improve representational efficiency without
substantial performance loss remains an open
problem.
The FFN module in the Transformer typically
accounts for a substantial portion of the model's
parameters and thus becomes a natural target for
structural compression or replacement. Inspired
by the Kolmogorov–Arnold representation idea,
combining several one-dimensional learnable
functions (such as splines) to approximate
high-dimensional mappings may provide higher
representational efficiency under constrained
parameter budgets. The objective of this study is
to design a Spline-KAN module to replace
BERT's FFN and to combine it with a two-stage
training strategy, to verify whether-under a strict
trainable-parameter budget of roughly 0.2M-it
can minimize performance degradation
compared to BitFit (which trains only biases)
and provide a fair comparison with
full-parameter fine-tuning.

2. Literature Review
In recent years, parameter-efficient fine-tuning
(PEFT) has become the mainstream approach for
adapting large pretrained models, with the core
objective of achieving performance close to
full-parameter fine-tuning while updating only a
very small number of parameters. The class of
methods that insert small adapter modules into
the model was popularized by Houlsby et al.
(Adapter, 2019), which inserts lightweight
bottleneck layers into each transformer block to
preserve pretrained weights while substantially
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reducing storage for multi-task or multi-model
deployment [2]. Nonetheless, adapters introduce
new modules and forward-time overhead; under
the most stringent parameter budgets or on
highly constrained deployment platforms, this
overhead can still be prohibitive. LoRA follows
a different design by injecting low-rank updates
into weight matrices, enabling the original
weights to remain frozen while adding trainable
low-rank factors that can be merged at inference
time, thus offering a favorable trade-off between
parameter efficiency and inference cost [4,12].
BitFit proposes a more radical simplification by
updating only bias terms; empirical results show
that this extreme minimalism can be surprisingly
effective on a range of small-to-medium tasks,
but its representational capacity becomes
limiting when more complex nonlinear
adaptation is required [3]. In practice, Adapter
and LoRA preserve more expressivity at the cost
of additional parameters or computation,
whereas BitFit is extremely lightweight but faces
a clear performance ceiling on tasks needing
richer nonlinear transforms.
The feed-forward network (FFN) sublayer in
Transformer architectures is long recognized as
a parameter- and computation-heavy component,
and a variety of works have targeted it with
sparsification, low-rank factorization, or
parameter sharing to reduce cost. Most of these
approaches operate at the linear-algebraic
level-matrix decompositions or pruning-rather
than rethinking the internal representation of the
FFN from the perspective of function
approximation (for example, replacing a dense
weight matrix with a learnable function basis).
The classical results of Kolmogorov and Arnold
show that multivariate continuous functions can
be represented by superpositions of a finite
number of univariate functions, which provides
theoretical justification for reconstructing
high-dimensional mappings via one-dimensional
learnable functions (Kolmogorov, 1957; Arnold,
1959). [6-7] Inspired by this line of thought,
recent proposals for Kolmogorov–Arnold
Networks (KAN) use families of
one-dimensional functions (e.g., splines) as
trainable basis functions to replace or reconstruct
the mapping carried out by traditional MLP/FFN
layers, offering a compression pathway that
differs qualitatively from low-rank or pruning
strategies [5]. Compared with merely reducing
matrix dimensions or sparsifying weights,
KAN-style methods change the expressive basis

of the mapping itself and therefore have the
potential to preserve richer nonlinear
transformations under tight parameter budgets;
however, their real-world performance depends
critically on engineering details such as
vectorized interpolation and the overhead of
many small GPU tensor operations, which
directly affect latency and efficiency.[8]
Combining the two research strands above
clarifies the trade-offs of current PEFT
techniques: adapters strike a balance between
performance and parameters but add module
overhead, LoRA supplies low-rank
compensation without changing inference
structure, and BitFit demonstrates that extremely
small parameter updates can suffice for some
tasks but reach a representational ceiling.
Structural replacement of the FFN by a
function-basis approach (for example, using
learnable splines as in KAN) presents an
alternative route: instead of locally adjusting
existing weight matrices, it alters the
parameterization and the learnable function
space of the mapping itself, an attractive
direction when pursuing higher expressivity
under very small budgets. [9] Accordingly,
integrating KAN-style structural replacements
with PEFT strategies-e.g., letting the
replacement converge first and then performing
ultra-low-parameter fine-tuning-becomes a
natural and necessary research direction:
function-basis replacement raises expressivity
under tight budgets, while staged training helps
control optimization stability and meet final
parameter constraints [10]. This motivation
underlies the present work's proposal of
Spline-KAN plus two-stage training.
Finally, it should be emphasized that although
the KAN idea is theoretically appealing,
practical effectiveness hinges on several
engineering factors: whether spline/interpolation
routines are fully vectorized, how to avoid
numerical instability during training, and how to
align training schedules and hyperparameters for
fair comparison with existing PEFT methods
such as LoRA, Adapter, and BitFit[12-13].
These implementation and experimental-design
concerns are explicitly addressed in this study
and explain why structural replacement (KAN)
and staged training (warmup →
ultra-low-parameter fine-tune) are evaluated
together within the same comparative
framework.
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3. Method

3.1 Module Replacement Design: Spline-KAN
The Spline-KAN module was designed to
replace the standard feed-forward network in
each Transformer layer (the original two-linear
→ activation → two-linear structure). The core
idea is to move the FFN's nonlinear mapping
from a representation based on a large weight
matrix to a composition of per-channel
one-dimensional learnable spline functions: first
linearly project the hidden vector into scalar
coordinates across several channels, then
perform one-dimensional interpolation on each
channel using that channel's control points, and
finally linearly project the per-channel responses
back to the original hidden dimension. This
approach is conceptually aligned with the
Kolmogorov–Arnold viewpoint that multivariate
functions can be approximated by superpositions
of univariate functions, and it follows recent
engineering attempts to use families of
one-dimensional functions to replace MLP/FFN
mappings.[5-7] The external interface is kept
fully compatible with the original FFN
(input/output both of hidden size H) so that the
module can be swapped into the Transformer
without changing attention sublayers,
embeddings, LayerNorm, or positional
encodings.
The forward mapping of the module is presented
below (the original stand-alone formulas are left
as empty centered placeholders here):

s=Ax+bA (1)
z=Spline(s;K) (2)

y=Bz+dB (3)
In the text that follows the above placeholders,
the notation and meanings are explained in plain
text: the layer input hidden vector is x of
dimension H; the input projection is A (with bias
b_A) producing per-channel scalar coordinates s
of dimension D (the paper's inter_size); K
denotes the per-channel control points with G
values per channel (code name knot_values,
per-layer shape [D, G]); the interpolation
operator Spline (·) maps s to per-channel
responses z (dimension D); finally B (with bias
b_B) projects z back to the hidden space as the
output y. Linear interpolation is used by default
(extensions to higher-order splines are possible),
and all interpolation index and weight
computations are fully vectorized to avoid
Python-level loops.
The interpolation step and boundary handling

are implemented with vectorized operations (the
original stand-alone formulas are left as empty
centered placeholders here):

u= s−gmin
gmax−gmin

⋅ (G−1) (4)
j= u , α=u−j (5)

zi= 1−α Ki,j+αKi,j+1 (6)
In implementation, the interpolation positions
are clamped so that indices lie within valid
ranges (out-of-grid positions are clamped to
endpoints); index extraction uses torch.gather
and all weight computations and combinations
are batched tensor operations. To avoid
numerical issues, key intermediate tensors are
kept in float32 even when mixed-precision
training is used, and special care is taken to scale
and clamp derived positions when training in
half precision to prevent index jitter or
underflow.
Parameter counts for a single Spline-KAN layer
are dominated by the projections and the control
points; the layerwise parameter count is
approximated as (original stand-alone formula
placeholder):

#params≈2HD+DG (7)
Concretely, the first two terms correspond to the
input and output projections, and the last term
corresponds to the per-channel G control points
(bias terms omitted). Under the main
configuration (H = 768, D = 512, G = 16) each
layer's control-point count D G_ equals 8,192;
across 12 layers this remains much smaller than
the full FFN trainable parameters. Furthermore,
with staged training it is possible to freeze A and
B at deploy time and keep only K and biases
trainable, thereby constraining final trainable
parameters to the target budget (on the order of a
few hundred thousand). [11]
In code and in the training pipeline, the
replacement scope and freeze/unfreeze strategy
are explicitly defined and strictly enforced. Each
original FFN (the two linear layers W1, b1 and
W2, b2, plus the intermediate activation) is
replaced by a kan_ffn module. The module
stores per-layer tensors such as proj_in.weight /
proj_in.bias, knot_values, and proj_out.weight /
proj_out.bias; checkpoints write these into the
state_dict under paths like
kan_ffn.layer{i}.proj_in.weight and
kan_ffn.layer{i}.knot_values, allowing later
loading of only knot_values for diagnostics or
only proj_in/proj_out for warm starts. Training
follows a strict two-stage schedule: during
warmup the proj_in, proj_out, knot_values and
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the classification head are all unfrozen (script
helper enable_kan_and_classifier()), using a
relatively large learning rate so the replacement
modules can learn initial mappings; when
switching stages the optimizer is rebuilt (a fresh
AdamW is instantiated with only parameters
whose requires_grad==True) to avoid retaining
stale optimizer state for frozen parameters; in the
BitFit stage proj_in and proj_out are frozen,
leaving only knot_values and all bias terms
trainable (implemented via enable_bitfit()), and
this stage uses a smaller learning rate for several
epochs so that the final number of trainable
parameters is strictly limited by the budget.
To preserve pretrained information and inference
structure elsewhere in the model, attention
sublayers, the embedding matrix, LayerNorm,
positional encodings and the classification head
remain unchanged (the classification head may
be optionally frozen/unfrozen for ablations).
Engineering measures to improve stability and
reproducibility include multiple initialization
modes for knot_values (for example,
INIT_MODE="linear" initializes control points
as an arithmetic progression and fits A, B to
approximate the original W1, W2 behavior,
reducing warmup oscillation); checkpoints
additionally record the current training stage and
the list of unfrozen parameters; when further
compression of warmup cost is required, A, B
can be implemented as low-rank factorizations
or shared across layers, although the default
keeps them full rank to preserve FFN
comparability.
Finally, for runtime efficiency, the interpolation
logic is fully vectorized (no Python loops),
indexing and gather use batched tensor indexing,
boundaries are clamped, and when appropriate
lookups are replaced by constant extrapolation to
avoid pathological gradients. The overall
replacement and training arrangement aims to
shift the principal learnable degrees of freedom
for nonlinear expression into per-channel spline
control points while leaving the pretrained
weights and inference graph otherwise intact;
warmup stabilizes the replacement modules, and
the subsequent BitFit stage collapses the
trainable budget to the minimal target set so as to
maximize downstream performance under strict
trainable-parameter constraints. This design and
its implementation are consistent with the
theoretical and practical foundations of KAN
and related one-dimensional function approaches.
[5-7][12]

3.2 Two-Stage Training Procedure
(kan_two_stage)
The two-stage training procedure
(kan_two_stage) divides model fine-tuning into
two purposeful phases. First, a relatively
permissive set of trainable parameters allows the
replaced Spline-KAN modules to establish stable
nonlinear mappings (Warmup). Second, under a
strict trainable-parameter budget, only a small
set of critical parameters is updated for task
adaptation (BitFit style). The staged arrangement
is intended to let the replacement structure
acquire sufficient expressive power before
applying minimal-parameter corrections, thereby
balancing parameter efficiency and performance
in deployment-constrained scenarios. This
approach is conceptually similar to bias-only
BitFit but extends it by performing bias and
spline-control-point fine-tuning after a Warmup
phase to obtain greater nonlinear plasticity.[3,5]
The concrete steps in the training pipeline are as
follows. After constructing and initializing the
replaced Transformer (all FFNs replaced by
Spline-KAN), the Warmup phase sets the
per-layer projection parameters and control
points to be trainable and also unfreezes the
classification head. A relatively large learning
rate with moderate regularization is used so that
the replacement modules quickly learn
per-channel mappings on the task data. The
Warmup optimization objective is to minimize
the task loss (for example, cross-entropy), which
can be written as

min
θ∈Pwarmup

L θ (8)

In the above placeholder, P_warmup denotes the
Warmup trainable-parameter set and L denotes
the training loss function (for example,
cross-entropy). During Warmup, the monitored
metrics include training/validation loss,
validation accuracy (and Macro-F1), per-epoch
duration, peak memory, and inference latency;
validation evaluation is performed at the end of
each epoch to select and save the best
checkpoint. To avoid inconsistencies between
optimizer state and frozen parameters, the
optimizer and learning-rate scheduler are rebuilt
at each stage transition: after freezing or
unfreezing parameters a new optimizer is
instantiated and only parameters whose
requires_grad==True are passed in, preventing
momentum or adaptive-state leakage from
affecting the subsequent stage.
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Upon Warmup completion, the pipeline enters
the BitFit stage: projection matrices A and B are
frozen, and only per-layer spline control points
K (code name knot_values) together with bias
terms in the model are kept trainable. The
learning rate is reduced and stricter

early-stopping or validation-monitoring rules are
applied. The BitFit-stage optimization objective
can be expressed as

min
θ∈Pbitfit

L θ (9)

with the trainable-parameter sets defined
conceptually as

Pwarmup= θ:θ∈proj_in ∪ θ:θ∈proj_out ∪ θ:θ∈knot_values ∪ θ:θ∈classifier_head (10)
Pbitfit={θ:θ∈knot_values }∪{θ: θ is a bias term} (11)

The above sets are recorded in the training logs
by parameter names and saved as an audit trail;
after every stage switch the training script prints
and persists the current list of trainable
parameter names and counts to guarantee
experiment reproducibility and auditability.
To ensure fair comparison, all baselines
(full-parameter baseline and BitFit-only) use an
equivalent training budget. When the two-stage
schedule is Warmup E_w + BitFit E_b, the
baseline and BitFit-only are trained for the
equivalent total epochs E_w + E_b or equal total
optimization steps, thereby removing training
duration as a confounding factor. Randomness is
controlled by using a fixed set of seeds and
running independent experiments per seed to
compute means and standard deviations.
Statistical significance between methods is
assessed by paired tests (paired t-test) on results
from the same seeds to increase statistical
power.
Several engineering details are critical for
training stability. Interpolation and indexing
operations must be fully vectorized to avoid
Python-level loops and the associated latency.
Under mixed-precision training, intermediate
tensors used for computing indices and
interpolation weights are kept in float32 to
prevent half-precision–induced index errors or
numerical jitter. Stage switches must be
accompanied by optimizer reconstruction and
checkpoint writing that includes the stage
identifier (for example, stage=warmup or
stage=bitfit), and the experiment directory must
store the stage hyperparameters, random seed,
trainable-parameter list, and best validation
metrics. Latency evaluation uses a short forward
warmup, repeated measurements with
torch.cuda.synchronize(), and reporting of the
median across runs to reduce measurement
noise.
In terms of model position and interactions, the
Spline-KAN modules replace the FFN at each
Transformer layer and their outputs are added
via residual connection before LayerNorm and

the next attention sublayer. Therefore, Warmup
learning affects not only local layer input–output
mappings but also the representation distribution
across multiple stacked layers; the BitFit stage
then uses knot_values and bias adjustments to
perform small cross-layer corrections, preserving
the complex mappings learned during Warmup
while achieving parameter sparsity. Ablation
studies include three settings-Warmup-only,
BitFit-only, and the full two-stage flow-each run
under identical training budgets and seeds to
quantify the incremental benefit Warmup
provides for later low-parameter fine-tuning.
Hyperparameter and logging conventions are
specified in the training protocol. Example
hyperparameters: Warmup epochs = 6, Warmup
lr = 5e−5, BitFit epochs = 4, BitFit lr = 2e−5,
batch size = 16. Training logs record per-epoch
train/validation metrics, current
trainable-parameter counts, per-epoch duration,
peak memory, and saved checkpoint paths with
stage identifiers. The staged training approach
thus combines the expressive capacity
introduced by the replacement modules with
stringent deployment-time parameter efficiency:
Warmup grants sufficient nonlinear expressivity,
while BitFit enforces a minimal final trainable
parameter set for low-cost adaptation under
resource constraints. This training strategy is
evaluated against BitFit-only and full-parameter
baseline to measure the trade-off between
parameter efficiency and performance.[3,5]

3.3 New Lightweight Fine-Tuning Methods
This section summarizes the additional
parameter-efficient fine-tuning methods
introduced for horizontal and joint evaluation
with the Spline-KAN two-stage scheme,
describing each method's structural highlights,
insertion points, estimated trainable-parameter
cost, and how it is used within the two-stage
training flow. The added methods include an
IA3-style scalar-scaling variant, Adapter-style
bottleneck modules, low-rank injection (LoRA),
and fine-tuning of LayerNorm scale/bias terms.
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The motivation for adding these methods is to
test the composability of the Spline-KAN
replacement with common PEFT techniques, to
compare performance-versus-latency tradeoffs
under the same parameter budgets, and
empirically determine which methods are most
complementary to the two-stage training
scheme.[2-4]
The IA3-style scalar-scaling variant implements
trainable per-channel or per-head multiplicative
scalars applied to the outputs of attention or FFN
sublayers. Concretely, a sublayer output u is
multiplied elementwise by a trainable scale
vector alpha (where alpha ∈ R^d, and d is the
corresponding channel or head dimension),
initialized to all ones.

u'=α⊙u (12)
This method incurs a very small parameter
overhead (approximately d scalars per layer) and
is therefore typically assigned to the second
(BitFit) stage as a tunable item for local
proportional correction after freezing large
matrices. In experiments, IA3-style scaling is
evaluated both as a standalone control and
jointly trained with knot_values to observe its
compensatory effect on Spline-KAN.
Adapter-style bottleneck modules are inserted at
canonical nonlinear positions within
Transformer layers (commonly after attention
and/or before the FFN). Each Adapter consists
of a down-projection Wd ∈ R^{r×H}, an
activation, and an up-projection Wu∈ R^{H×r},
where the bottleneck dimension r is a
hyperparameter. The per-layer parameter count
is roughly 2 H r (biases excluded); with small r
(for example 8 or 16) the overall added
parameter budget remains modest. Adapters are
used both as independent baselines
(Adapter-only) and combined with Spline-KAN
(training projections and Adapter together in
Warmup, then training only Adapter and biases
in BitFit) to evaluate the complementarity
between local bottleneck nonlinearity and
per-channel spline nonlinearity. The Adapter
design and usage follow established practice to
ensure comparability.[2]
LoRA injects a low-rank update into a target
weight matrix W by adding ΔW = U V, with U
∈ R^{m×r}, V ∈ R^{r×n}, and small rank r.
LoRA's advantage is that it can approximate
weight adjustments with few added parameters
and, when desired, the low-rank updates can be
merged into the base weights at inference time to

yield zero extra inference cost. In experiments,
LoRA is mainly applied to query/key/value
matrices or key FFN matrices to measure
performance differences and combination effects
between low-rank linear compensation and
spline-based nonlinear replacement; LoRA is
typically configured as an optional unfreeze
target during the BitFit stage or as a separate
comparison group.[4,11]
Fine-tuning LayerNorm scale (γ) and bias (β) is
another extremely low-cost PEFT variant (a
form related to BitFit). The parameter count
scales with the number of layers but remains
very small overall. This strategy is included as
part of the BitFit-only baseline and is also used
together with Spline-KAN in the second stage by
default, allowing per-layer scale and bias
adjustments to correct across-layer distribution
shifts.[3]
Integration and training protocol: all added
modules are inserted and jointly initialized at
model construction time (scale vectors initialized
to ones; Adapter and LoRA initialized following
common practice). During Warmup,
experiments may selectively unfreeze subsets
according to design (typically
proj_in/proj_out/knot_values of Spline-KAN
together with newly added modules are unfrozen
to provide sufficient learning degrees of
freedom). At the transition to BitFit, priority is
given to keeping control points K (knot_values)
and bias terms trainable; the additional methods
(IA3, Adapter bottleneck parameters, or LoRA
low-rank factors) can then be set trainable or
frozen per experimental group to evaluate
different combinations under a strict budget. To
ensure fair comparison, all control groups run
with the same total training steps and epochs as
the two-stage scheme, and optimizers are rebuilt
after any stage switch to clear momentum or
adaptive state that no longer applies.
For experiment logging and analysis, each
method or combination records whether it is
trainable during Warmup/BitFit, the actual
number of added trainable parameters, the
checkpoint path, and the observed effects on
inference latency and peak memory. Rough
per-layer parameter cost estimates used in the
study are: IA3 (per-channel) ≈ d; Adapter ≈ 2 H
r; LoRA ≈ r (m + n) for an m×n weight matrix;
Spline-KAN control points ≈ D G (as given in
e.1). These methods are treated as orthogonal or
complementary to Spline-KAN: they can replace
or compensate for linear adaptation needs in
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layers not directly handled by Spline-KAN (e.g.,
attention), or be combined to test which
combinations yield the most robust
improvements under equal or lower
trainable-parameter budgets. Comparative
results are reported per-seed with paired
statistics, effect sizes, and resource metrics
(latency / memory / training time) so that each
method's practical value can be assessed from
both performance and deployment-cost
perspectives.

3.4 Baselines and Control Settings
To ensure fairness and reproducibility, all
methods are compared using the same data splits,
the same set of random seeds, and equivalent
training budgets. The primary comparison
groups are: full-parameter fine-tuning
(baseline_full), bias-only fine-tuning
(BitFit-only)[3], the two-stage Spline-KAN
scheme (kan_two_stage), and several common
PEFT variants used as additional controls
(Adapter, LoRA, IA3-style scaling).
Experiments use bert-base-chinese as the
common backbone (so that embeddings and
attention weights share the same architecture and
pretrained weights), and all runs are executed on
a single vGPU with 48 GB memory; peak
memory, training time and inference latency are
logged for deployment-cost assessment.
Training budgets and hyperparameters are
strictly aligned across methods. When
Spline-KAN adopts a two-stage schedule
(Warmup E_w + BitFit E_b), both baseline_full
and BitFit-only are trained for the equivalent
total epoch count E_total = E_w + E_b (or for an
equivalent number of optimization steps) so that
training-duration differences do not confound
performance comparisons. The main
experimental configuration used as an example
is: Warmup epochs = 6, Warmup lr = 5e−5;
BitFit epochs = 4, BitFit lr = 2e−5; batch size =
16. Weight decay is set to 0.01 during Warmup
and usually to 0 during BitFit. The random-seed
set example is {42, 123, 2023, 7, 999}; each
method is run independently for every seed and
per-seed results are saved for later statistical
analysis.
Implementation details for the baselines are as
follows. baseline_full: all model parameters are
fine-tuned (attention, FFN, LayerNorm, etc.);
optimizer is AdamW with standard learning-rate
scheduling and weight decay; this setting serves
as an upper-bound performance reference

following common BERT fine-tuning
practice[1]. BitFit-only: only bias terms in the
model are unfrozen and updated (including
linear-layer biases and LayerNorm biases); all
other weights remain frozen and the optimizer is
configured to include only the bias parameter
group. This represents the extreme
low-parameter baseline. Adapter: classic
bottleneck adapters (down-projection →
activation → up-projection) are inserted at
canonical nonlinear positions in Transformer
layers; in designated experiment groups only
Adapter parameters are trained (or trained jointly
with other modules). The Adapter bottleneck
dimension r is chosen small (for example 8 or 16)
to align parameter budgets with other methods
[2]. LoRA: a low-rank update is injected into
target weight matrices by adding a factorized
term ΔW = U V with small rank r; during
training only U and V are updated, and the
low-rank updates can be merged into the base
weights at inference to maintain zero extra
inference cost. LoRA is applied to attention
q/k/v matrices or key FFN matrices to compare
low-rank linear compensation against
spline-based nonlinear replacement; the rank r is
tuned per trial to match parameter budgets [4,11].
IA3-style scaling: per-channel or per-head
trainable scaling vectors α (initialized to ones)
are applied to attention or FFN outputs; the
parameter overhead is minimal and this
technique is typically included as a BitFit-stage
trainable item for local proportional correction.
The above methods serve both as independent
baselines and as components that can be
combined with Spline-KAN to test
complementarity (for example, training
Spline-KAN and Adapter jointly during Warmup,
then in BitFit training only knot_values together
with Adapter parameters). To support analysis,
every experiment records whether each method
(or submodule) was trainable during Warmup
and/or BitFit, the actual number of added
trainable parameters, the checkpoint path, and
the impact on inference latency and peak
memory. Rough per-layer parameter-cost
estimates used in planning are: IA3 (per-channel)
≈ d; Adapter ≈ 2 H r; LoRA ≈ r (m + n) for an
m×n weight matrix; Spline-KAN control points
≈ D G (as given in e.1). Comparative results are
reported per-seed and include paired statistics,
effect sizes, and resource metrics (latency / peak
memory / training time) so that each method's
practical trade-off between accuracy and
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deployment cost can be evaluated.

3.5 Evaluation Metrics and Measurement
Details
All experiments use validation-set metrics for
model selection and report final results on an
independent test set. The main performance
metrics are Accuracy and Macro F1. Resource
metrics are recorded alongside performance:
Trainable Params, Total Params, Peak Memory,
Train Time, and Latency. To quantify
uncertainty from randomness, each configuration
is repeated under a fixed set of random seeds;
results are reported as mean ± standard deviation,
and the Methods section lists the seed set and the
randomization controls used in each run.
Validation metrics are computed in the standard
way. Accuracy is the number of correct
predictions divided by the total number of
examples. Macro F1 is computed by first
calculating the F1 score per class and then taking
the arithmetic mean across classes. Because
class imbalance can bias simple accuracy, Macro
F1 is used as the primary aggregate metric in
tables; accuracy and confusion matrices are
presented when more detailed analysis is needed.
Repeated-run results for each configuration are
summarized and tested with the following
procedure. For a configuration with results
x1,…,xnx_1,\dots, x_nx1​ ,…,xn​ across
seeds, the sample mean and sample standard
deviation are computed (here the per-seed
observations are denoted x_i, and the number of
seeds by n).

x�= 1
n i=1

n xi� (13)

s= 1
n−1 i=1

n xi−x� 2� (14)

Method comparisons use a paired test to exploit
the same-seed pairing: for two methods A and B
define the per-seed differences d_i = x_i^(A) −
x_i^(B)_; the paired t statistic is computed from
the mean difference d̄ and the sample standard
deviation of differences s_d and the
corresponding two-tailed p-value is reported.

t= d�

sd/ n
(15)

Effect size is reported using paired Cohen's d,
computed as

dCohen=
d�

sd
(16)

The 95% confidence interval for the mean
difference is reported as

CI95%=d�±t0.975,n−1 ⋅
sd
n

(17)

When multiple pairwise comparisons are
performed, p-values are corrected using the
Holm–Bonferroni procedure to control the
family-wise Type I error rate.
Resource and performance measurement
procedures are standardized across experiments.
The number of trainable parameters is computed
by summing the element counts of parameters
whose requires_grad is true; in notation,

Trainable= p∈Θ numel(p)� (18)
where Θ denotes the set of parameters with
requires_grad==True. Total parameter count is
the sum of numel over all model parameters.
Peak memory is read from the framework's
peak-allocation API and saved in megabytes.
Training time is accumulated as wall-clock time
of the main training loop: per-epoch wall-clock
durations are measured and summed to yield
total training time; to avoid contamination by
I/O spikes or one-time setup costs, the timing
procedure measures forward+backward
main-loop time inside each epoch and logs
data-loading overhead separately to help
diagnose I/O bottlenecks.
Inference latency uses a unified
warmup-and-measure protocol. The model is
first warmed up with several unrecorded forward
passes to stabilize caches and JIT compilation;
the measurement phase then runs many
independent forward passes, synchronizing the
GPU after each pass to ensure accurate timing.
The median of the measurements is taken as the
stable latency estimate; the mean and a 95%
interval are also recorded to reflect distribution
shape. The measurement recipe used in the
experiments involves running 50 forward passes
as a warmup to initialize the system. After that,
200 timed forward passes are executed, with
GPU synchronization called after each pass. The
elapsed time for each pass is recorded during
this process. The latency median is then reported
by calculating the median of the recorded times,
along with the mean and standard deviation for a
comprehensive analysis of the performance.
All runs use the same tokenization and
preprocessing settings: the same tokenizer, the
same maximum-sequence truncation policy, and
identical padding and batch-construction logic
for training and validation. Randomization is
controlled by fixing seeds for the Python random
module, NumPy, and the deep-learning
framework; cudnn deterministic and benchmark
settings are recorded to aid reproducibility.
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Model selection picks the checkpoint with the
maximal specified validation metric; that
checkpoint is then evaluated once on the
held-out test set to produce final numbers.
Logging and result saving follow a standardized
CSV schema to enable automated aggregation
and statistical testing. Each experiment writes a
row (and per-epoch rows when needed) with
fields such as mode, grid_size, inter_size, seed,
epoch, val_acc, val_macro_f1, trainable,
total_para, latency_median_ms,
latency_mean_ms, peak_mem_mb,
train_total_time_s, save_path, etc. Each run also
saves a checkpoint annotated with the current
stage identifier (for example stage=warmup or
stage=bitfit), the full training hyperparameters
file, the random seed, and a complete
human-readable training log so any single
experiment can be replayed exactly.

4. Conclusion
In the main configuration on the FewCLUE
eprstmt subset (G = 16, intermediate = 512), and
based on the three sets of experimental data
provided with paired comparisons using the
same random seeds, the results clearly support
the conclusions of this study. Replacing the FFN
with Spline-KAN, combined with a two-stage
training schedule (Warmup KAN → BitFit),
leads to significant downstream performance
gains, even under a strict trainable-parameter
budget.
Compared to bias-only fine-tuning (BitFit-only),
the two-stage KAN method improves validation
accuracy by an average of approximately 21.25
percentage points (kan mean = 0.7788 vs. bitfit
mean = 0.5663). A paired t-test reveals that this
improvement is statistically significant (t(4) =
5.54, p = 0.0052), with paired Cohen's d ≈ 2.48
and a 95% confidence interval for the difference
of approximately [0.1060, 0.3190]. These results
indicate that under a very small
trainable-parameter budget, bias-only adaptation
reaches a clear performance ceiling, while
structural replacement can significantly enhance
the model's representational capacity.
When compared with the full-parameter baseline
using the same configuration (intermediate =
512), the two-stage KAN method also
demonstrates superior performance. It shows an
average improvement of about 8.38 percentage
points (kan mean = 0.7788 vs. baseline mean =
0.6950). The paired t-test for this comparison is
significant (t(4) = 3.16, p = 0.0341), with

Cohen's d ≈ 1.41 and a 95% confidence interval
for the difference of approximately [0.0102,
0.1573]. This suggests that, for this dataset and
parameter-budget/training settings, a
well-designed structural replacement along with
staged training can outperform full-parameter
fine-tuning, providing a better
performance-to-parameter-efficiency tradeoff.
However, there are some limitations to the
experiments. These conclusions are based on the
FewCLUE eprstmt subset, fixed hardware
(single vGPU-48GB), and the chosen
hyperparameter settings. Additionally, the spline
implementation must be fully vectorized to
avoid run-time overheads that could negatively
affect inference latency. To strengthen the
findings, it is recommended to repeat the
experiments across a broader set of downstream
tasks, larger model scales, and a larger set of
random seeds. It would also be valuable to
compare against other PEFT methods, such as
LoRA and Adapter, under the same
trainable-parameter budgets.
In summary, under a constrained
trainable-parameter budget, replacing the FFN
with Spline-KAN and adopting a two-stage
training approach can substantially improve
downstream task performance with a small
number of trainable parameters (≈ 0.2M). This
offers a practical and effective
parameter-efficient fine-tuning method for
resource-constrained deployment scenarios, such
as multi-model hosting and edge devices.
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