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Abstract: As a key technology in the field of
computer vision, image super-resolution
reconstruction aims to recover high-fidelity
details from low-resolution images and has
been widely applied in various fields in recent
years. This paper mainly introduces two
mainstream deep learning models for
super-resolution reconstruction:
Convolutional Neural Networks (CNN) and
Generative Adversarial Networks (GAN), and
systematically compares their technical
characteristics and applicable scenarios.
Relying on local feature extraction and
parameter sharing mechanisms, CNN models
excel in objective indicators such as Peak
Signal-to-Noise Ratio (PSNR), with high
computational efficiency and stable training.
Represented by models like SRCNN and
EDSR, they are suitable for scenarios with
strict accuracy requirements, such as medical
imaging and remote sensing monitoring.
Through the adversarial training between
generators and discriminators, GAN models
introduce perceptual loss to improve visual
realism. Models such as SRGAN and
ESRGAN can generate rich texture details,
but they have issues such as reliance on
high-quality data for training and
susceptibility to artifact generation. They are
more applicable to fields that prioritize
subjective experience, such as film and
television restoration and game image quality
enhancement. This paper further analyzes the
differences between the two types of models in
terms of computational cost and
generalization ability, clarifies the basis for
model selection by combining typical
application cases, and finally looks forward to
the development directions such as
lightweight fusion architectures, providing a
reference for the practical implementation of
the technology.
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1. Introduction

1.1 Evolution and Core Value of
Super-Resolution Reconstruction Technology
Image Super-Resolution (SR) is a core
technology in the field of computer vision that
addresses the "lack of details in low-resolution
images". Its essence is to infer the lost pixel
information in low-resolution images through
algorithms and solve the '"underdetermined
inverse problem" [1]. The technological
development has gone through three generations:
The traditional interpolation stage relies on
methods such as bicubic interpolation and
nearest-neighbor  interpolation to achieve
reconstruction through simple mapping between
pixels, but the generated images are prone to
blurriness and blocking effects; The sparse
representation stage is represented by SR
methods based on dictionary learning, which
extract texture features through sparse
coefficient matching, but have poor adaptability
to complex scenes; Since 2014, the deep
learning stage has become the mainstream, with
data-driven as the core. Convolutional Neural
Networks (CNN) and Generative Adversarial
Networks  (GAN) have achieved key
breakthroughs in "objective accuracy"” and
"subjective visual effect" respectively[2].

Currently, super-resolution technology has
become a rigid demand for high-quality imaging
in multiple fields: In the field of medical
imaging, sub-micron resolution improvement
can assist in the early diagnosis of liver tumors
and retinal diseases; In the remote sensing field,
SR technology reduces the reliance on satellite
hardware, enabling mid-range satellites to
achieve the ground object recognition accuracy
of high-end equipment; In video conferencing
scenarios, SR combined with compression
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algorithms can realize 1080p image quality
transmission under a 1Mbps bandwidth; In the
film and television entertainment field, 4K/8K
old film restoration and real-time
super-resolution in games have become key
technical supports for industrial upgrading.

1.2 Research Objectives and Key Evaluation
Systems

This paper focuses on two mainstream models,
CNN and GAN , and conducts a comparative
analysis centering on three key objective
indicators: robustness, reconstruction quality,
and computational efficiency. It clarifies the
model selection criteria by combining four
typical application scenarios: remote sensing,
medical imaging, video conferencing, and film
and television entertainment. Among these
indicators, robustness specifically refers to the
model's adaptability in complex environments,
covering three dimensions: noise robustness,
blur robustness, and data distribution robustness.
Noise robustness measures the model's ability to
suppress common noises under test conditions of
Gaussian noise (intensities of 15dB and 20dB)
and salt-and-pepper noise (densities of 5% and
10%). Blur robustness evaluates the model's
capability to restore blurred images using test
scenarios including Gaussian blur kernels of
sizes 3x3 and 5x5, as well as motion blur with
displacements of 3 pixels and 5 pixels. Data
distribution robustness verifies the model's
scenario generalization ability through tests on
cross-dataset and cross-modal data.
Reconstruction quality encompasses both
objective and subjective indicators: objective
indicators include Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index (SSIM),
while the subjective indicator adopts Mean
Opinion Score (MOS). Computational efficiency
covers three dimensions: number of parameters,
single-frame inference time, and training
computing power requirements, which directly
determine the feasibility of the model's
engineering implementation[3].
2. Core Architectures and Technical
Principles of CNN and GAN

2.1 Architectural Design and Technical

Advantages of Convolutional Neural
Networks (CNN)
CNN realizes super-resolution through an

end-to-end process of "local feature extraction -
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feature fusion - upsampling". Its core advantages
come from the parameter sharing and local
receptive field mechanisms, which can not only
efficiently capture the spatial correlation of
images but also reduce model complexity and
improve the efficiency of feature extraction [4].
Typical CNN architectures are represented by
SRCNN, EDSR, and RCAN, and their evolution
shows a dual trend of "enhanced feature
extraction capability” and "optimized training
stability". Proposed in 2014, SRCNN was the
first CNN model used for super-resolution,
divided into three stages: "feature extraction -
nonlinear mapping - reconstruction". It extracts
local features through 5x5 and 3x3 convolution
kernels, but has a large number of parameters
(about 600,000), and the upsampling stage relies
on bicubic interpolation for assistance. Released
im 2017, EDSR removes the Batch
Normalization layer in traditional CNN to avoid
feature distortion, introduces residual
connections to solve the gradient vanishing
problem, and supports 2x/3x/4x multi-scale
super-resolution. Its PSNR reaches 34.68dB on
the DIV2K dataset, which is 2.3dB higher than
that of SRCNN. Proposed in 2018, RCAN adds
a "Residual Channel Attention Block (RCAB)",
which strengthens key features such as edges
and textures through channel weight allocation.
The number of parameters increases to 15
million, but the reconstruction accuracy is
further improved, with the 4x super-resolution
SSIM reaching 0.921, making it a core choice
for high-precision super-resolution scenarios [5].
The loss functions of CNN mostly adopt Mean
Squared Error (MSE) or L1 loss, with the core
goal of optimizing pixel-level errors to improve
PSNR and SSIM. Such loss functions can make
the model converge quickly and ensure
pixel-level accuracy, but they also easily cause
the "over-smoothing" problem in reconstructed
images, resulting in the loss of high-frequency
texture details and thus affecting the subjective
visual effect.

2.2 Architectural
Advantages of

Networks (GAN)

GAN realizes super-resolution through the
zero-sum game mechanism of "Generator (G) -
Discriminator (D)". Its core innovation is the
introduction of perceptual loss and adversarial
loss, which breaks through the limitation of
traditional pixel-level optimization, prioritizes

Design and Technical
Generative  Adversarial
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the improvement of the subjective visual realism
of images, and is more in line with human visual
perception preferences[6].

Typical GAN architectures are represented by
SRGAN and ESRGAN, with the design focus on
"strengthening texture generation capability” and
"improving adversarial training stability".
Proposed in 2016, SRGAN's generator adopts an
architecture of "8 residual blocks + sub-pixel
convolution", and the discriminator distinguishes
between real and fake images through
"convolution + LeakyReLU + fully connected
layers". It was the first to introduce perceptual
loss extracted by the VGG network, with the 4x
super-resolution MOS score reaching 4.42,
which is 18% higher than that of SRCNN. The
optimized ESRGAN in 2018 improves the
generator into a "Residual-in-Residual Dense
Block (RRDB)" to enhance the efficiency of
feature reuse, adopts a multi-scale discrimination
strategy for the discriminator, and removes the
batch normalization layer to reduce feature
distortion. The richness of texture details of 4x
super-resolution is 25% higher than that of
SRGAN, but it has the problem of being prone
to artifact generation and needs to be applied
cautiously in accuracy-sensitive scenarios.

The loss function of GAN is a combination of
adversarial loss and perceptual loss: Adversarial
loss forces the generator to generate
high-resolution images that are difficult for the
discriminator to distinguish through the game
between the generator and the discriminator;
Perceptual loss optimizes the naturalness of
textures by simulating the process of the human
visual system perceiving image features. This
combined loss can significantly improve the
subjective visual effect, but it also leads to the
pixel-level error of the model being higher than
that of CNN, and the performance of objective
indicators is relatively weak [7].

3. Comparative Analysis of Objective
Indicators between CNN and GAN
3.1 Robustness Comparison: Noise,
Blurriness, and Data Adaptability

Robustness directly determines the usability of
the model in complex real-world scenarios. The
two types of models show significant differences
in three aspects: noise suppression, blur
adaptation, and data distribution adaptation
(Table 1). A mixed dataset of Setl4 and DIV2K
is used for the test to ensure the generality of the
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results[8].

In terms of noise robustness, CNN shows
obvious advantages. The design of residual
connections and dense connections enables it to
effectively suppress noise interference. For
example, when the Gaussian noise intensity is
20dB, the PSNR of EDSR only decreases by
1.2dB, while that of SRGAN decreases by 2.8dB;
RCAN focuses on structural features through
channel attention, and when the salt-and-pepper
noise density reaches 10%, the SSIM can still be
maintained at 0.89, while that of ESRGAN is
only 0.82. In contrast, the adversarial training
mechanism of GAN tends to amplify the impact
of noise. The generator may misjudge noise as
effective features in pursuit of texture details,
leading to ‘"granular artifacts" in the
reconstructed images. For example, when the
Gaussian noise intensity is 15dB, the artifact
proportion of ESRGAN reaches 12%, while that
of EDSR is only 3%.

In terms of blur robustness, CNN has stronger
adaptability to uniform blur. The lightweight
CNN model FSRCNN achieves a 4x
super-resolution PSNR of 28.7dB under the
action of a 5x5 Gaussian blur kernel, which is
3.5dB higher than that of SRGAN; GAN has
weak processing ability for non-uniform blur.
For example, in the motion blur scenario
(displacement of 5 pixels), the MOS score of
SRGAN drops from 4.42 to 3.15, while that of
EDSR only drops to 3.98, and the attenuation
range of the subjective visual effect is
significantly smaller than that of GAN.

In terms of data distribution robustness, GAN
has better cross-domain adaptation ability. By
learning the laws of data distribution through
adversarial training, GAN can better adapt to
data from different sources. For example, on
remote sensing images from different satellites
(Gaofen-2, Landsat-8), the fluctuation of the
land cover classification accuracy of ESRGAN
is only 5%, while that of EDSR reaches 12%;
On infrared MRI images, a type of
non-traditional visible light data, the PSNR of
EDSR is 4.2dB lower than that of visible light
MRI, while that of ESRGAN is only 2.1dB
lower, showing stronger scene generalization
ability.[9]

3.2 Reconstruction Quality Comparison:
Objective Accuracy and Subjective Vision

Reconstruction quality is the core evaluation
criterion for super-resolution technology. CNN
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and GAN form a complementary pattern of
"objective accuracy - subjective vision" (Table
2). The test scenario is 4x super-resolution, and
the DIV2K validation set is used for the test to
ensure the authority of the data [10].

In terms of objective indicators (PSNR/SSIM),
CNN has an absolute advantage. The
optimization of pixel-level loss functions enables
CNN to minimize reconstruction errors. For
example, the PSNR and SSIM of EDSR reach
34.68dB and 0.921, which are 5.2dB and 0.08
higher than those of SRGAN respectively;
RCAN further improves the accuracy through
channel attention, with the PSNR exceeding
35dB, making it one of the models with the best
objective indicators and playing an irreplaceable
role in scenarios with strict accuracy
requirements such as medical imaging and
remote sensing. In contrast, GAN sacrifices part
of the objective accuracy to improve the
subjective visual effect. For example, the PSNR
of SRGAN is only 29.48dB, but through texture
enhancement technology, in the super-resolution
of natural images, it is subjectively closer to real

images, and the restoration degree of details
such as hair and leaves is significantly higher
than that of CNN.

In terms of subjective indicators (MOS), GAN
shows an absolute advantage. The scores from
100 subjects (on a 1-5 scale) show that the score
of ESRGAN in the super-resolution of natural
images is 4.58, which is 14% higher than that of
EDSR (4.02); In the film and television image
restoration scenario, the "texture naturalness"
score of ESRGAN reaches 4.7, while that of
EDSR is only 3.8, which is more in line with
human perception needs for image details. The
disadvantage of CNN lies in the "plastic look"
caused by over-smoothing. The generated
images have overly regular edges and lack the
randomness of real textures. For example, in
medical imaging, the boundary of liver tumors
reconstructed by EDSR shows "angular" features,
which are easily misjudged as calcifications by
doctors during interpretation, while the boundary
reconstructed by ESRGAN is more natural.
Although there are a small number of artifacts,
the interference to diagnosis is relatively small.

Table 1. Experimental Result Comparison of Robustness between CNN and GAN
Robustness Test Condition CNN(EDSR) | GAN(ESRGAN) |Advantageous Model
Noise Robustness|Gaussian Noise 20dB PSNR 30.2dB [PSNR 27.4dB  |[CNN
Salt-and-Pepper Noise SSIM 0.89 SSIM 0.82 CNN
Density 10%

Blur Robustness [5x5 Gaussian Blur PSNR 29.1dB  |PSNR 25.6dB  |CNN
Motion Blur MOS 3.98 MOS 3.15 CNN
(Displacement 5 Pixels)

Data Distribution [Cross-Satellite Remote  |Accuracy /Accuracy GAN

Robustness Sensing Data Fluctuation 12% [Fluctuation 5%
Infrared MRI Images PSNR 26.8dB  PSNR 28.9dB  |GAN

Super-Resolution, Test Set: DIV2K)

Table 2. Comparison of Reconstruction Quality Indicators between CNN and GAN (4%

Model IPSNR [SSIM MOS Score IMOS Score Core Advantage

(dB) (Natural Images) |(Medical Images)
EDSR (CNN) 34.68 10.921 4.02 4.35 High Objective Accuracy
RCAN (CNN) [35.12 /0.928 4.15 4.48 Good Adaptability to Medical Imaging
SRGAN (GAN) [29.48 [0.842 14.42 3.85 [Excellent Visual Effect on Natural Images
ESRGAN (GAN) [28.95 |0.836 4.58 3.92 Rich Texture Details

3.3 Computational Efficiency Comparison:
Parameter Quantity, Speed, and Cost
Computational efficiency determines the
engineering implementation capability of the
model and directly affects the adaptability to
real-time scenarios and edge devices. CNN is
significantly superior to GAN in real-time
performance and cost control (Table 3). NVIDIA
Tesla T4 GPU is used as the test hardware to
ensure the consistency of the computing power
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environment [11].

In terms of parameter quantity and inference
speed, CNN has obvious lightweight advantages.
The number of parameters of the lightweight
model FSRCNN is only 1.5M, while that of
ESRGAN reaches 40M; In the inference of a
single 256x256 image, the time taken by
FSRCNN is only 2.3ms, while ESRGAN takes
18.7ms; Even the high-precision CNN model
RCAN (with 15M parameters) has an inference
time of only 8.5ms, which can support real-time
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1080p@60fps super-resolution and meet the
real-time requirements of scenarios such as
video conferencing and mobile image
enhancement. The disadvantage of GAN lies in
the slow speed caused by the large number of
parameters. For example, the parameter
proportion of the RRDB module of ESRGAN
reaches 70%, and the inference time on the CPU
(Intel 17-12700K) is 120ms per frame, which
cannot meet the fluency requirements of
real-time scenarios (usually requiring more than
301fps) [12].

In terms of training cost, CNN also has a
significant efficiency advantage. The training
cycle of EDSR on a single V100 GPU is only 24

hours, consuming about 50 TFLOPs of
computing power; However, the training
stability of GAN is poor, and multi-card
synchronous training is required to avoid mode
collapse. For example, ESRGAN requires 8
V100 GPUs for synchronous training, with a
cycle of 72 hours and a computing power
consumption of about 600 TFLOPs, which is 12
times that of EDSR. In addition, GAN has
higher requirements for the quality of training
data and needs high-quality paired datasets. The
data annotation cost is 3 times higher than that of
CNN, which limits its application in data-scarce
fields.

Table 3. Comparison of Computational Efficiency between CNN and GAN (Hardware: NVIDIA

Tesla T4 GPU)

Model  [Parameter [Single-Frame Inference[Training Cycle Computing Power \Adaptable Scenarios

Quantity (M)[Time (256x256) (Single V100) |Consumption (TFLOPs)
FSRCNN|L.5 2.3 ms 12 Hours 20 Real-Time Video
(CNN) Conferencing
EDSR |15 8.5 ms 24 Hours 50 Offline Processing of
(CNN) Medical Imaging
SRGAN Offline Film and
(GAN) 16 15.2 ms 48 Hours 300 Television Restoration
ESRGAN Game Image Quality
(GAN) 40 18.7 ms 72 Hours 600 Enhancement

4. Model Selection and Practical Cases in
Typical Application Scenarios

4.1 Remote Sensing Field: Accuracy First,
CNN as the Dominant Choice

Super-resolution of remote sensing images needs
to take both "land cover classification accuracy"
and "robustness in complex environments" into
account. Due to its high objective accuracy and
strong noise suppression ability, CNN has
become the mainstream choice in this field,
while GAN shows supplementary potential in
specific scenarios [13].

The application practice of CNN focuses on two
directions: land cover classification and disaster
monitoring. The original resolution of Gaofen-2
satellite images is lm. After 2x super-resolution
by EDSR, the classification accuracy of
farmland and construction areas increases from
82% to 91%. During the 2023 Henan flood
disaster, the remote  sensing  images
reconstructed by EDSR helped the rescue team
accurately locate the flooded areas, with the
positioning error controlled within 50 meters,
providing key data support for emergency rescue
and disaster relief; Aiming at the characteristics
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of night low-light remote sensing images, RCAN
strengthens the light source features through
channel attention, increasing the road
recognition accuracy from 65% to 88%, which is
better than 75% of ESRGAN, and shows more
stable performance in night disaster monitoring.
The application of GAN in the remote sensing
field has obvious limitations, mainly reflected in
the interference of artifacts on interpretation. In
the super-resolution of remote sensing images,
the proportion of "false road edges" generated by
ESRGAN reaches 8%, which may lead to
misjudgment of the disaster area, with an error
range of 15%, and the risk is high in
accuracy-sensitive scenarios such as disaster
statistics; However, GAN also has potential in
enhancing complex terrain textures. For example,
in mountain remote sensing images, ESRGAN
can enhance the ridge line texture to assist in
landslide risk assessment. Its MOS score is 0.6
higher than that of EDSR, which is subjectively
more convenient for manual interpretation of
terrain features. In the future, its practicality can
be improved through artifact suppression
technology.
4.2 Medical

Imaging Field: Accurate
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Diagnosis, CNN as the First Choice
The core requirement of medical imaging
super-resolution is "no artifacts" and "high

accuracy" to avoid artifacts misleading diagnosis.

The pixel-level accuracy and training stability of
CNN are more in line with clinical needs, while
the application of GAN is limited due to data
dependence and artifact problems.

The core applications of CNN include CT/MRI
lesion detection and microscopic image
enhancement. The "super-resolution auxiliary
diagnosis system" developed by GE Healthcare
based on EDSR increases the original resolution
of lung CT images from 0.6mm to 0.3mm,
increasing the lung nodule detection rate from
78% to 92%, and reducing the false positive rate
by 30% compared with traditional methods,
significantly reducing the risk of missed
diagnosis and misdiagnosis by doctors; In MRI
liver tumor diagnosis, the images reconstructed
by RCAN can clearly show the tumor
boundaries, reducing the doctor's interpretation
time from 30 minutes to 15 minutes and

improving the diagnosis efficiency. In the
super-resolution of cell microscopic images
(sub-micron level), the real-time advantage of
FSRCNN is significant, which can dynamically
capture the cell division process with a frame
rate of 30fps, while ESRGAN only has 10fps,
which cannot meet the real-time observation
needs [14].

The application risks of GAN in the medical
imaging field are mainly reflected in two aspects:
artifacts and data privacy. In the super-resolution
of breast molybdenum target images, the
proportion of "false calcification points"
generated by ESRGAN reaches 5%, which may
lead to the misjudgment of benign lesions as
malignant, increasing the misdiagnosis rate by
8% and causing serious interference to clinical
diagnosis; At the same time, GAN requires a
large number of high-quality annotated data for
training, but medical data is strictly restricted by
privacy protection, making it difficult to build
large-scale training sets, which further restricts
its application scope [15].

Table 4. Schematic Diagram of Super-Resolution Effect Comparison of Medical Imaging

Image
Type

Low-Resolution Image

CNN(EDSR) Reconstructed GAN(ESRGAN) Reconstruct
Image

ed Image

Lung CT The boundary of the lung nodule

The nodule boundary is
clear, and the diameter errornodule boundary, and the
is controlled within 0.5mm |diameter error deviation

There are artifacts at the

reaches lmm

(Lung |[is blurry, and the diameter

Nodule) misjudgment deviation reaches
2mm

Liver

Tumor jand normal tissue is unclear

MRI

The boundary between the tumor [The boundary between the [The boundary between the
tumor and normal tissue is
clear, with no artifacts

tumor and normal tissue is
blurry, with granular artifacts

4.3 Video Conferencing Field: Real-Time
Transmission, Lightweight CNN Models Take
the Lead

The core requirement of video conferencing is to
balance "low latency", "low bandwidth" and
"image quality". The real-time performance and
low-bandwidth adaptability of lightweight CNN
models are irreplaceable, while GAN is difficult
to be implemented due to insufficient real-time
performance and high bandwidth consumption.
The technical implementation of CNN focuses
on two directions: real-time super-resolution,
bandwidth optimization, and mobile terminal
adaptation. Zoom video conferencing adopts
FSRCNN 2x super-resolution technology to
realize 1080p image quality transmission under a
1Mbps bandwidth, with a latency of only 45ms,
while ESRGAN requires 120ms. At the same
time, the bandwidth consumption is reduced by
40% compared with the non-super-resolution
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solution, meeting the fluency requirements of
scenarios such as remote office and online
education; The number of parameters of the
lightweight model MobileSR is only 0.8M,
which  supports  real-time  720p@30fps
super-resolution on mobile phones with a power
consumption of only 50mW, while the power
consumption of ESRGAN reaches 200mW,
making it more suitable for the low-power
requirements of mobile video conferencing [16].
The application of GAN in video conferencing
scenarios has two major bottlenecks. One is
insufficient real-time performance. The frame
rate of ESRGAN in video -conferencing
scenarios is only 15fps, which is lower than the
fluency threshold of 30fps, and the latency
reaches 120ms, exceeding the interaction
threshold of 100ms, resulting in dialogue
stuttering and poor synchronization. The other is
high bandwidth consumption. The images
generated by GAN have complex textures and
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low compression rates. Under the same image
quality, the bandwidth consumption is 50%
higher than that of CNN, which is prone to
stuttering and image quality fluctuations in
low-bandwidth networks, failing to meet the
requirements of stable transmission.

4.4 Film and Television Entertainment Field:
Visual Experience, GAN as the Core

The core requirement of film and television
entertainment is to prioritize "subjective visual
effects". The texture generation ability of GAN
makes it the first choice for old film restoration
and game image quality enhancement, while

CNN is difficult to meet the needs due to
insufficient  textures and weak  artistic
processing.

The benchmark applications of GAN include
4K/8K restoration of old films and game image
quality enhancement. Warner Bros. used
ESRGAN to restore "Casablanca" (a 1942
black-and-white film), super-resolving 720p
images to 4K. The MOS score of skin textures
and clothing wrinkles reached 4.7, and the box
office of the restored film increased by 15%
compared with the original version, realizing the
commercial value reconstruction of classic IP;

Netflix used SRGAN to solve the "image
blurriness" problem in the remastered version of
"Friends", with a user satisfaction rate of 92%,
becoming a benchmark case for old film
restoration on streaming platforms. In the game
field, NVIDIA DLSS technology integrates
ESRGAN. In the game "Cyberpunk 2077", the
frame rate is increased from 30fps to 60fps
under 4K resolution, while maintaining the
visual realism of '"neon textures" and
"architectural details", with a MOS score of 4.6,
compared with only 3.9 of EDSR, significantly
improving the game immersion.

The application limitations of CNN in the film
and television entertainment field are mainly
reflected in two aspects: textures and artistic
processing. In game super-resolution, the "metal
texture" and "fabric texture" generated by EDSR
are too smooth, and the MOS score 1s 0.7 lower
than that of ESRGAN, lacking the detail levels
of real materials; In the production of film and
television special effects, CNN is difficult to
generate artistic super-resolution effects such as
"oil painting style" and "watercolor style", while
GAN can realize this requirement through style
transfer technology, providing more creative
space for film and television creation [17].

Table 5. Model Selection and Effect Comparison in Four Application Scenarios

IApplication Core RequirementPreferred Key Indicator Typical Case
Scenario Model Performance
Remote Sensing  |[Land Cover CNN(EDSR/R |Classification Gaofen-2 Disaster

Classification CAN) Accuracy 91%,  [Monitoring

\Accuracy, Noise PSNR 30.2 dB

IRobustness
Medical Imaging [Lesion Accuracy, CNN(EDSR/FS|Lung Nodule GE Healthcare CT

INo Artifacts RCNN) Detection Rate Super-Resolution System

92%, SSIM 0.92
Video Low Latency, CNN(FSRCNN [Latency 45ms, Zoom 1080p Real-Time
Conferencing Low Bandwidth [/MobileSR) Bandwidth 1Mbps |Super-Resolution
Film and Television[Visual Realism, |GAN(SRGAN/ IMOS 4.7, Frame |'Casablanca" 4K
Entertainment Rich Textures ESRGAN) Rate 60fps Restoration
blurriness; in terms of computational efficiency,

5. Conclusion lightweight models can realize real-time

This paper systematically compares the technical
characteristics of CNN and GAN in
super-resolution reconstruction. The results show
that the two types of models have their own
advantages and complementary applicable
scenarios. Relying on the parameter sharing
mechanism and pixel-level optimization strategy,
CNN performs prominently in terms of
robustness, computational efficiency, and
objective accuracy. Its robustness is reflected in
the strong suppression ability against noise and
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inference; in terms of objective accuracy, it leads
in PSNR and SSIM indicators. Therefore, it is
more suitable for scenarios with high
requirements for accuracy or real-time
performance, such as remote sensing land cover
classification, medical imaging diagnosis, and
real-time transmission in video conferencing.
Relying on the adversarial training mechanism
of generators and discriminators, GAN
introduces perceptual loss to optimize the
subjective visual effect, and has obvious
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advantages in texture realism and cross-domain
data adaptability. It is more suitable for scenarios
that focus on visual experience, such as the
restoration of old films and television works and
game image quality enhancement [18].

The core  development  direction  of
super-resolution technology in the future is the
"in-depth integration of accuracy and vision".
Through four technical paths, namely
lightweight fusion architecture, self-supervised
learning, cross-modal feature fusion, and
hardware-algorithm collaborative optimization,
the existing bottlenecks will be broken, and the
practical  application of  super-resolution
technology in more fields such as autonomous
driving, AR/VR, and deep space exploration will
be promoted. Finally, the technical goal of "high
fidelity, low latency, and wide adaptability" will
be achieved, providing core support for the
high-quality imaging needs of various
industries[19] .
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