
The Optimization Path of Computational Efficiency Based on
Algorithm Complexity Theory

Bei Nan
Department of School of Engineering, University of Edinburgh, Edinburgh, United Kingdom

*Corresponding Author

Abstract: This article mainly talks about how
the algorithm complexity theory can help us
optimize the computational efficiency. First of
all, we will explain the basic meaning of
algorithm complexity theory, including the
two core concepts of time complexity and
space complexity, and why they are important.
Then we will analyze the significance and
difficulties of improving computing efficiency
in the digital age. Next, the article will explain
in detail how the algorithm complexity theory
theoretically provides basic support for
optimizing computational efficiency, such as
helping us see the essence of the problem
clearly and quantitatively evaluating
computational resources. After that, we will
discuss the specific methods to optimize the
computational efficiency when applying this
theory, including its application strategies in
different fields and the optimization
opportunities brought by cross-domain
integration. Finally, the paper will look
forward to the development of algorithm
complexity theory in optimizing
computational efficiency in the future, hoping
to provide a comprehensive and in-depth
theoretical reference for improving
computational efficiency.

Keywords: Algorithm Complexity Theory;
Computational Efficiency; Optimize the Path;
Theoretical Support; Application Strategy

1. Introduction
When the digital wave swept the world rapidly,
computing efficiency became the core index to
measure the performance of computer systems
and the actual effect of various applications [1].
From the smart phone applications that we often
use in our daily life, such as social media, online
shopping, mobile payment, etc., the smooth
operation and rapid response of these
applications depend on efficient computing
power. In the field of large-scale scientific

computing, such as climate simulation, gene
sequencing, astrophysical research, etc.These
complex scientific problems require powerful
computing resources to process massive data and
carry out complex model operations. In the
enterprise-level data processing system,
including customer relationship management,
supply chain management, financial analysis,
etc., efficient calculation can ensure that
enterprises can make accurate business decisions
in time in the fierce market competition [2].
Efficient computing is not only to make users
feel convenient and smooth to use, but also has a
great influence on scientific research, company
decision-making, and even the development of
the whole society [3]. In scientific research,
efficient computing can help scientists discover
new things faster, and make them process more
data and do more complex experiments in a
shorter time, so that all disciplines can make
progress. In a company, fast and accurate
calculation can help them better understand
market changes, improve their working methods,
save money, and become stronger and earn more
money. For the whole society, efficient
computing can make public services better, such
as making intelligent transportation systems
smarter or analyzing medical data quickly, so
that everyone's quality of life will be higher.
Algorithm is the core method of computer
problem solving, and the complexity of the
algorithm directly determines how much time
and space resources are needed in the calculation
process [4]. Algorithm complexity theory is like
a set of rules, which studies how many resources
an algorithm will "eat". It helps us to better
understand and optimize the computational
efficiency, and also provides a solid theoretical
basis and useful analytical tools. By deeply
studying the complexity theory of algorithms,
we can clearly know how much resources
different algorithms will consume when dealing
with problems of different scales. In this way, we
can improve the algorithm and make the

Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 4 No. 1, 2026 155

Copyright @ STEMM Institute Press http://www.stemmpress.com



calculation more efficient. Using the theory of
algorithm complexity to optimize the calculation
efficiency is very important to promote the
development of computer technology and
improve the level of informatization in various
fields [5]. This will not only help us to develop
more efficient and practical computer systems
and applications, but also provide strong
technical support for us to solve complex
problems in the real world.

2. Overview of Algorithm Complexity Theory

2.1 The Basic connotation of Algorithm
Complexity Theory
The theory of algorithm complexity mainly
studies how many resources are needed when the
algorithm is executed. Among these, time
complexity and space complexity are the two
most important concepts [6]. Time complexity is
used to measure the time required for algorithm
execution, but it does not simply refer to how
long the algorithm actually runs, but reflects the
trend that the number of execution steps of the
algorithm increases with the increase of input
scale [7]. Space complexity measures the storage
space needed for algorithm execution, which
includes the space occupied by the algorithm
itself and the storage space applied for in
addition to the input data [8]. The place occupied
by the algorithm itself refers to the location of
the algorithm code in the memory, and the extra
storage space is the memory space that the
algorithm applies for in order to store the
intermediate results and temporary variables.

2.2 The Significance of Algorithm Complexity
Theory
The importance of algorithm complexity theory
lies not only in that it can help us evaluate the
performance of an algorithm, but also in that it
can provide theoretical guidance for the design
and selection of the algorithm. By analyzing the
complexity of different algorithms, developers
can choose the most suitable one from many
algorithms to solve the problem, which can not
only meet the requirements of the topic, but also
save computing resources as much as possible.
In addition, the theory of algorithm complexity
provides an important analytical framework for
the basic research of computer science, helps us
understand the nature of computing problems
and the boundary of computability, and promotes
the continuous development of computer science

theory.

3. The Importance and Challenges of
Computational Efficiency

3.1 The Importance of Computational
Efficiency
Computational efficiency is very important in all
fields of our modern society. In the field of
scientific research, efficient calculation can
speed up scientific simulation and data analysis,
help scientists discover natural laws, verify
scientific conjectures, and promote the
development of various disciplines. For example,
in climate simulation, efficient calculation
algorithms can more accurately simulate the
complex changes of the earth's climate system
and provide scientific basis for us to deal with
climate change. In the commercial field,
computing efficiency is directly related to the
operational efficiency and competitiveness of
enterprises. Rapid data processing and analysis
can help enterprises understand market changes
in time, optimize business processes, and make
accurate decisions. Taking the financial industry
as an example, high-frequency trading relies on
efficient calculation algorithms, which can
complete a large number of trading operations in
a very short time, thus gaining market
advantages. In daily life, the improvement of
computing efficiency enables various smart
devices and apps to quickly respond to our needs
and bring a smooth experience, such as real-time
translation and intelligent voice assistants.

3.2 Challenges in Computational Efficiency
With the continuous expansion of data scale, the
problem becomes more and more complicated,
and the computational efficiency also encounters
many challenges. With the advent of the era of
big data, the amount of data has exploded.
Traditional computing algorithms often
encounter bottlenecks in time and space
resources when dealing with large-scale data,
and it is difficult to complete tasks within a
reasonable time. At the same time, some
complex problems, such as the training of deep
learning models in the field of artificial
intelligence and the analysis of gene sequences
in bioinformatics, have extremely high
computational complexity and pose great
challenges to computing resources. In addition,
the diversity of computing environments also
increases the difficulty of optimizing computing

156 Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 4 No. 1, 2026

http://www.stemmpress.com Copyright @ STEMM Institute Press



efficiency. Different hardware platforms,
operating systems and software environments
have different effects on the execution efficiency
of the algorithm. How to achieve efficient
computing in different computer environments
has become a difficult problem that we need to
solve quickly.

4. The Theoretical Support of Algorithm
Complexity Theory for the Optimization of
Computational Efficiency

4.1 Analysis of the Essence of the Problem
The algorithm complexity theory can help us to
study the complexity of the problem and deeply
analyze its most fundamental characteristics.
Different kinds of problems have different
complexity attributes. For example, P-type
problems refer to those that can be solved in
polynomial time, while NP-type problems refer
to those that we can verify the answer in
polynomial time, but we haven't found a quick
solution yet. For NP-class problems, we have not
found a fast deterministic algorithm. However,
through the analysis of algorithm complexity
theory, we can know the difficulty level of the
problem, which provides us with a direction to
find approximate algorithms or heuristic
algorithms. A deep understanding of the nature
of the problem will enable developers to choose
appropriate algorithm strategies according to the
characteristics of the problem, avoid blind
attempts, and thus improve the computational
efficiency.

4.2 Quantitative Evaluation of Computing
Resources
The theory of algorithm complexity gives us a
standard method to quantitatively evaluate
computing resources. By analyzing the time
complexity and space complexity, we can
accurately predict how many resources the
algorithm needs under different input scales.
This quantitative evaluation allows developers to
reasonably plan computing resources when
designing algorithms, and know the performance
of this method in practical application in
advance. For example, when designing an
algorithm for processing large-scale data, how
much storage space is needed can be determined
according to the space complexity analysis, so
that the algorithm can be prevented from running
because of insufficient memory. According to
time complexity analysis, the execution time of

the algorithm can be evaluated to see if it can
meet the real-time requirements. Through this
quantitative evaluation, we can optimize the
algorithm and improve the utilization efficiency
of computing resources.

4.3 Theoretical Guidance for Algorithm
Design and Optimization
The theory of algorithm complexity provides a
lot of useful theoretical guidance for our
algorithm design and optimization. For example,
classical algorithm design methods such as
divide-and-conquer strategy, dynamic
programming and greedy algorithm are all based
on the complexity of the problem and the
optimization goal of computational efficiency.
The divide-and-conquer strategy is to break a big
problem into small problems to solve. By
reasonably designing how to split and merge, the
time complexity of the algorithm can be reduced.
Dynamic programming is to save the answers to
subproblems and avoid repeated calculations, so
that the complexity that might have been
exponential level can be changed into
polynomial level. The greedy algorithm is to
choose the one that looks best at present at every
step, hoping to achieve the overall optimization
through these local optimal choices, which is
suitable for some problems with greedy selection
properties. Under the guidance of algorithm
complexity theory, these methods can effectively
improve the computational efficiency of the
algorithm and provide us with useful tools to
solve various complex problems.

5. The Application Path of Algorithm
Complexity Theory in Optimizing
Computational Efficiency

5.1 Application Strategies in Different Fields
In the field of AI, the algorithm complexity
theory is particularly important to optimize the
efficiency of model training and reasoning. Deep
learning models usually have large parameters
and complex calculation structures, and the
training process needs a lot of computing power
and time. Through the analysis of algorithm
complexity, we can design more efficient
training algorithms, such as distributed training
and model compression, to reduce the time
complexity and space complexity of training. In
the reasoning stage, by optimizing the model
structure and algorithm implementation, the
calculation amount is reduced, the reasoning

Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 4 No. 1, 2026 157

Copyright @ STEMM Institute Press http://www.stemmpress.com



speed is improved, and the requirements of
real-time applications are met.
In the field of database, the theory of algorithm
complexity will guide us to optimize database
queries and design indexes. The efficiency of
database query operation will directly affect the
performance of the whole system. By analyzing
the time complexity of the query algorithm, we
can optimize the query plan and select the best
query path. At the same time, designing the
index structure reasonably can reduce the time
complexity of data retrieval and make the query
faster. For example, the selection and design of
different types of indexes, such as B-tree index
and hash index, are based on the consideration of
query complexity.
In the field of network communication,
algorithm complexity theory is used in the
design of routing algorithms and the
optimization of network traffic. An efficient
routing algorithm can quickly find the best path
from the source node to the target node and
reduce the transmission delay. By analyzing the
complexity of routing algorithms, we can design
routing protocols that adapt to different network
topologies and traffic characteristics. In the
aspect of network traffic optimization, we can
use algorithm complexity theory to design traffic
scheduling algorithms, allocate network
bandwidth reasonably, and improve the overall
transmission efficiency of the network.

5.2 Optimization Opportunities Brought by
Cross-Domain Integration
With the continuous development of technology
in various fields, cross-domain integration has
become a new trend to improve computing
efficiency. Algorithm complexity theory is very
important in cross-domain integration, which
provides theoretical support for mutual learning
and cooperative optimization between different
technologies. For example, the combination of
artificial intelligence and the Internet of Things
(IoT) produces the concept of Intelligent Internet
of Things (AIOT). In the AIoT system, a large
number of IoT devices will generate massive
data, which needs efficient algorithms to process
and analyze. By applying the algorithm
complexity optimization method in the field of
artificial intelligence to the data processing of
IoT, and combining the characteristics of IoT
equipment and the network itself, we can design
a distributed computing algorithm that is more
suitable for AIoT system, so that the speed and

real-time performance of data processing are
improved.
In addition, the combination of cloud computing
and edge computing also brings us new
opportunities to optimize computing efficiency.
Cloud computing has powerful computing
resources and storage capacity, but the delay of
data transmission is relatively high. Edge
computing is close to the data source and can
respond to local requests quickly, but its
computing resources are limited. By analyzing
the algorithm complexity theory, we can
reasonably divide the computing tasks between
cloud and edge. According to the complexity and
real-time requirements of the task, the
appropriate computing nodes are selected, so
that the efficient use of computing resources can
be realized and the overall computing efficiency
can be improved.

6. The Future Development Trend of
Algorithm Complexity Theory in the Field of
Computational Efficiency Optimization

6.1 Deep Integration with Emerging
Technologies
In the future, the theory of algorithm complexity
will be closely combined with new technologies
such as quantum computing and biological
computing. Quantum computing has superior
parallel computing ability and can solve
complex problems that traditional computers
can't handle. Algorithm complexity theory will
provide a theoretical framework for the design
and analysis of quantum algorithms, help us
develop more efficient quantum algorithms, and
give full play to the advantages of quantum
computing. Biocomputing is a simulation of the
computing process of biological systems, which
has a unique computing model and information
processing mode. Algorithm complexity theory
can learn from the characteristics of biological
computing, explore new computing models and
algorithm design methods, and provide new
ideas for solving complex computing problems.

6.2 Comprehensive Optimization for Complex
Systems
With the continuous improvement of social
informatization, complex systems such as smart
cities and smart healthcare appear constantly.
These systems involve many fields and
subsystems, and the optimization of computing
efficiency is facing greater challenges. In the

158 Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 4 No. 1, 2026

http://www.stemmpress.com Copyright @ STEMM Institute Press



future, the theory of algorithm complexity will
develop in the direction of comprehensive
optimization of complex systems, and design
cross-domain and cross-level optimization
algorithms by comprehensively considering
multiple objectives and constraints of the system.
Through the integration of knowledge and
technology in different fields, the overall
improvement of computational efficiency of
complex systems is realized, and the
development of social informatization is
promoted to a higher level.

6.3 Optimization Oriented Towards Green
Computing
Under the background of promoting energy
conservation and emission reduction all over the
world, green computing has become an
important development direction in computer
science. The theory of algorithm complexity will
play an important role in green computing. By
optimizing the algorithm, we can reduce the
energy consumption in the calculation process.
Future research should not only pay attention to
the time complexity and space complexity of the
algorithm, but also consider their energy
complexity, and design an algorithm that can
meet the requirements of computational
efficiency and save electricity. This can help
reduce the carbon emissions of computer
systems and promote the transformation of the
computer industry to a green and sustainable
development direction.

7. Conclusion
Algorithm complexity theory is an important
foundation of computer science and plays an
irreplaceable role in optimizing computational
efficiency. By analyzing the essence of the
problem, it can quantitatively evaluate the
computing resources and provide theoretical
guidance for the design and optimization of the
algorithm. The theory of algorithm complexity
lays a solid theoretical foundation for the
optimization of computational efficiency. At the
application level, the application strategies of
this theory in different fields and the
optimization opportunities brought by
cross-domain integration provide effective ways

to improve computing efficiency in various
fields. Looking forward to the future, the theory
of algorithm complexity will be deeply
integrated with emerging technologies to
optimize complex systems in an all-round way
and develop towards green computing.
Continuous and in-depth research on the
optimization path of computational efficiency by
algorithm complexity theory is of great
significance for promoting the progress of
computer technology, facilitating the
informatization development of various fields,
and achieving green and sustainable
development.

References
[1] Barr, D., Harrison, J., & Conery, L. (2011).

Computational thinking: A digital age skill
for everyone. Learning & Leading with
Technology, 38(6), 20-23.

[2] Tang, W., & Yang, S. (2023). Enterprise
digital management efficiency under cloud
computing and big data. Sustainability,
15(17), 13063.

[3] Dongarra, J., Gannon, D., Fox, G., &
Kennedy, K. (2007). The impact of
multicore on computational science software.
CTWatch Quarterly, 3(1), 1-10.

[4] Papadimitriou, C. H. (2003). Computational
complexity. In Encyclopedia of computer
science (pp. 260-265).

[5] Ali, Y. A., Awwad, E. M., Al-Razgan, M., &
Maarouf, A. (2023). Hyperparameter search
for machine learning algorithms for
optimizing the computational complexity.
Processes, 11(2), 349.

[6] Zenil, H. (2020). A review of methods for
estimating algorithmic complexity: Options,
challenges, and new directions. Entropy,
22(6), 612.

[7] Chauhan, Y., & Duggal, A. (2020). Different
sorting algorithms comparison based upon
the time complexity. International Journal
Of Research And Analytical Reviews, (3),
114-121.

[8] Rome, H. (2023). The space race: Progress in
algorithm space complexity (Doctoral
dissertation, Massachusetts Institute of
Technology).

Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 4 No. 1, 2026 159

Copyright @ STEMM Institute Press http://www.stemmpress.com




