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Abstract: With the increasing proliferation of
sensor fusion, industrial control systems (ICS),
and internet services, multivariate time-series
data has become ubiquitous in fields such as
intelligent manufacturing, financial
monitoring, network security, and
transportation. Multivariate Time-Series
Anomaly Detection (MTSAD) aims to identify
patterns that deviate significantly from
normal behavior within high-dimensional
dynamic metrics, thereby providing critical
support for system monitoring and early
warning. Compared with static data and
univariate sequences, multivariate time series
are characterized by temporal dependencies,
complex inter-variable interactions, and
dynamic distribution shifts, posing strictly
higher requirements for anomaly detection.
This paper first introduces the definitions of
time-series anomaly detection and categorizes
common anomaly types. Secondly, it classifies
existing methods from both time-domain and
frequency-domain perspectives, providing a
comprehensive analysis of their advantages,
limitations, and application scenarios. Finally,
the paper explores key research directions for
the future design of anomaly detection
methods, offering a reference for both
theoretical and applied research in this
domain.
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1. Introduction
Multivariate time-series data is widely prevalent
in domains such as industrial control, intelligent
manufacturing, environmental monitoring, and
financial analysis. In these applications, anomaly
detection in time-series data is crucial for
ensuring system stability and security. The

primary objective of anomaly detection is to
identify abnormal behaviors—distinguishable
from regular patterns—within vast amounts of
normal data. These anomalies may stem from
equipment failures, cyberattacks, environmental
changes, or human intervention. Unlike
traditional univariate time-series anomaly
detection, multivariate scenarios require the
simultaneous modeling of temporal
dependencies and cross-variable structural
relationships, making algorithm design
significantly more challenging[1].
Time-series anomaly detection refers to the
identification of data segments or patterns that
differ significantly from normal behavior within
a time series. In multivariate contexts, the data
not only reflects the laws of individual variables
changing over time but also involves complex
interactions and dependencies among variables.
The goal is to provide early warning signals to
the system by capturing these deviations from
normal patterns. Since outliers often indicate
potential system risks, faults, or abnormal events,
their timely identification is vital for maintaining
system stability and safety.
Traditional univariate anomaly detection
methods [2] often fail to capture correlations
between variables and system-level abnormal
behaviors. Conversely, multivariate time-series
anomaly detection must address dynamic
changes in the temporal dimension while
accounting for mutual influences in the variable
dimension. In recent years, the rise of deep
learning has provided new opportunities to
address this challenge. The field is experiencing
rapid development and evolution, transitioning
from early statistical methods and traditional
machine learning algorithms to modern deep
learning models such as Recurrent Neural
Networks (RNNs), Graph Neural Networks
(GNNs), and attention mechanisms. Furthermore,
frequency-domain analysis has demonstrated
superior performance in handling time-series
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data with distinct periodicities and frequency
components. By utilizing techniques such as the
Fourier Transform and Wavelet Transform,
frequency-domain methods convert time-series
data into spectral information, thereby revealing
periodic and frequency characteristics. This
approach is particularly effective for detecting
anomalies that are difficult to identify in the time
domain, such as periodic faults and equipment
vibration anomalies.
This paper surveys relevant literature in the field
of time-series anomaly detection from recent
years, summarizing the technical characteristics,
applicable scenarios, and limitations of existing
methods. Furthermore, it explores future
development directions to provide a
comprehensive reference for researchers and
practitioners in related fields.

2. Definitions and Applications of Time-Series
Anomaly Detection

2.1 Problem Definition
Given a multivariate time series X, as shown in
Eq. (1),

1 2{ , ,..., }, d
T tX x x x x  (1)

where the two parameters respectively denote
the dimension of sensors or indicators and the
sequence length. the main task is, in an
unsupervised setting, to determine whether there
exist potential anomalies within a sliding time
window. During the inference stage, the
weighted sum of the two absolute errors,
prediction error and reconstruction error, is used.
A threshold is set, and the observations are
evaluated according to the anomaly score; that is,
when the anomaly score obtained for a time
window exceeds the threshold, the window is
marked as anomalous. Here, a binary indicator is
used to represent whether the data point at time
stamp ttt is anomalous (1 for anomalous and 0
for normal).

2.2 Applications
Multivariate Time-Series Anomaly Detection
(MTSAD) is extensively applied across various
industries. The following are several typical
application scenarios:
1)Intelligent Manufacturing: During the
operation of industrial equipment, anomalous
data may indicate equipment malfunctions or
potential issues within the production process.
Real-time monitoring enables the timely

detection of anomalies, effectively reducing
equipment downtime and production losses.
2)Cybersecurity: In network traffic monitoring,
anomalous traffic patterns may reflect
cyberattacks or malicious behaviors. The timely
identification of traffic anomalies prevents
security vulnerabilities from being exploited.
3)Financial Monitoring: In financial markets,
abnormal transaction data can signal sudden
market shifts, fraudulent activities, or irregular
fluctuations. Effective anomaly detection
methods assist financial institutions in robust
risk management.
4)Transportation: Within transportation systems,
anomalous data may reveal irregular changes in
traffic flow. Timely early warnings facilitate the
optimization of traffic management and the
reduction of accidents.

2.3 Problems and Challenges in Time-Series
Anomaly Detection
Constructing a robust framework for time-series
anomaly detection remains difficult. It requires
characterizing both long-term and short-term
temporal dependencies within individual
sequences while simultaneously modeling the
coupling relationships across features.
Furthermore, robustness against noise must be
intrinsic to the model structure. Broadly
speaking, time-series anomaly detection faces
the following primary issues and challenges:
1)Temporal Dependencies and Inter-variable
Correlations: Variables in multivariate time-
series data typically exhibit temporal
correlations, and complex dependencies often
exist between variables. Traditional methods
struggle to capture these high-dimensional, non-
linear dependencies, resulting in insufficient
model performance.
2)Noise and Perturbations: Real-world time-
series data frequently contain noise, missing
values, or other external perturbations. These
factors can significantly compromise the
stability and robustness of anomaly detection.
3)Multi-scale and Long-range Dependencies:
Anomalies may manifest as short-term abrupt
changes, long-term drifts, or periodic variations.
Effectively capturing multi-scale features from
data and modeling long-range dependencies
remain significant challenges.
4)Real-time Performance and Computational
Efficiency: With the increasing demand for real-
time capabilities in industrial and internet
applications, many existing methods suffer from
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high computational complexity, making them
difficult to deploy for rapid detection in
resource-constrained environments.

3. Classification of Anomalies and Datasets

3.1 Classification of Time-Series Anomalies
Time-series anomaly detection can be
systematically categorized into three paradigms
based on deviation morphology and
discrimination criteria: Point Anomalies,
Contextual Anomalies, and Collective
Anomalies. This classification reveals a
progressive complexity—ranging from isolated
amplitude deviations to violations of conditional
expectations, and finally to the disruption of
pattern structures—directly corresponding to the
need for models to possess modeling capabilities
ranging from shallow statistics to deep semantics.
Examples of anomaly types are shown in Fig. 1.

Figure 1. Examples of Time Series Anomaly
Detection Types

Point Anomalies: These refer to observations at
a specific time point that deviate significantly
from the normal pattern. They typically occur as
short-term anomalous events. These anomalies
usually appear independently and can be
determined without relying on preceding or
succeeding temporal associations. The degree of
deviation can be directly quantified via statistical
thresholds, reconstruction errors, or prediction
residuals. For example, instantaneous spikes in
industrial sensors caused by electromagnetic
interference, or a sudden surge in CPU usage to
100% on a server while adjacent timestamps
remain around 20%.

Contextual Anomalies: These refer to anomalies
that are conditional upon specific contexts; that
is, the occurrence of the anomalous event
depends on a specific time window or
background. The determination of such
anomalies must be combined with contextual
information such as time, periodicity, and trends.
Viewed in isolation (without context), the data
point may fall entirely within a normal statistical
range. For instance, a data point may be normal
during certain time periods but considered
anomalous during others. In practical industrial
systems, these three types of anomalies often
occur simultaneously. An ideal detection
framework should possess multi-scale
perception capabilities, enabling it to respond
quickly to isolated point anomalies while
capturing subtle deviations in context and
patterns.
Collective Anomalies: These refer to a
continuous subsequence that deviates from
normal behavior in terms of overall dynamic
patterns (e.g., shape, frequency, dependency
structure, or variable covariance), even though
the individual values within the subsequence
may fall within the normal range. Such
anomalies typically manifest as a collection of
abnormalities across multiple time steps or
variables. Single-point statistics are usually
insignificant; therefore, judgment must be based
on the sequence as a whole, often relating to the
system's long-term trends or periodic
fluctuations.

3.2 Datasets
Multiple public datasets are employed in time-
series anomaly detection research. Common
datasets include:
SWaT [3]: The Secure Water Treatment (SWaT)
dataset, provided by the Singapore University of
Technology and Design (SUTD), is designed to
simulate cybersecurity issues in water treatment
systems, with a particular focus on attacks and
defenses in Industrial Control Systems (ICS). It
contains data from multiple sensors in a water
treatment facility and is suitable for researching
anomaly detection in ICS.
WADI [4]: The Water Distribution (WADI)
dataset is designed specifically for water
distribution systems, aiming to provide a testbed
for simulating cyber-physical attacks. It covers
data from multiple sensors, assisting researchers
in developing anomaly detection algorithms
tailored for water distribution infrastructure.
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SMD [5]: The Server Machine Dataset (SMD)
comes from a large internet company (often used
in smart manufacturing contexts in literature)
and primarily contains data from various sensors
(metrics). It is used to research fault diagnosis
and anomaly detection in production equipment.
This dataset is widely used in studies concerning
industrial equipment fault detection and
predictive maintenance.
MSL, SMAP [6]: These two datasets are
provided by NASA. MSL (Mars Science
Laboratory) and SMAP (Soil Moisture Active
Passive) focus on telemetry data monitoring
(such as soil humidity and freeze-thaw states in
the context of SMAP). Acquired via aerospace
sensors, these datasets are applicable to climate
monitoring and anomaly detection in telemetry
data.
SKAB [7]: The Skoltech Anomaly Benchmark
(SKAB) is provided by Skoltech. It aims to
provide benchmark data for time-series anomaly
detection algorithms, specifically addressing
multivariate point anomaly detection and
changepoint detection problems. It is suitable for
evaluating anomaly detection in industrial and
environmental systems.

4. Classification of Time-Series Anomaly
Detection Models
Research methods for Multivariate Time-Series
Anomaly Detection (MTSAD) can be classified
from various perspectives. This section surveys
existing approaches across four dimensions:
statistical methods, traditional machine learning
methods, deep learning methods, and time-
domain versus frequency-domain analysis. The
classification framework is illustrated in Fig. 2.

Figure 2. Classification Diagram of Temporal
Anomaly Detection Model

4.1 Classification of Time-Series Anomaly
Detection Based on Statistics
The fundamental premise of statistical-based
time-series anomaly detection is that normal data

follows a specific stochastic distribution (e.g.,
Gaussian distribution), whereas anomalies are
low-probability events located at the tail of the
distribution. In multivariate scenarios, the
emphasis is placed on capturing the covariance
relationships between variables, utilizing the
statistical characteristics of time-series data to
identify outliers. Typical methods include
Moving Average (MA), smoothing filtering,
Seasonal-Trend Decomposition, and Auto-
Regressive Integrated Moving Average
(ARIMA). The Moving Average method
smooths random fluctuations by averaging data
within a fixed window, thereby accentuating
trends and seasonal patterns.
The ARIMA model integrates three
components—Auto-Regressive (AR), Integrated
(I), and Moving Average (MA)—to model time
series. It predicts future values and compares
them with actual observations; if the residual
exceeds a specific confidence interval, the data
point is flagged as an anomaly. Furthermore,
Statistical Process Control (SPC) methods, such
as Shewhart control charts, CUSUM, and
EWMA, are widely used in industrial processes
for online detection. These methods assume that
monitoring metrics follow a statistical
distribution and trigger alarms when real-time
values deviate from the mean by several
standard deviations or exhibit significant trend
changes.
Reference [8] proposes the Seasonal Hybrid
Extreme Studentized Deviate (S-H-ESD)
algorithm. This method performs seasonal-trend
decomposition on the time series and
subsequently applies statistical tests to the
residual component to detect anomalies. In
industrial equipment monitoring, simply setting
upper and lower control limits for measured
variables can also detect out-of-limit anomalies
in a timely manner. However, statistical methods
often rely on stationarity and specific
distribution assumptions, limiting their ability to
detect anomalies in complex patterns and non-
linear relationships. As the dimensionality of
multivariate systems increases, univariate
statistical monitoring cannot account for inter-
variable correlations, often leading to missed
detections of correlated anomalies. Additionally,
statistical methods require the manual setting of
thresholds or model orders. When data
distributions or noise characteristics change, the
model requires re-calibration, resulting in poor
adaptability.
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4.2 Classification of Time-Series Anomaly
Detection Based on Machine Learning
Traditional machine learning-based methods
typically distinguish between normal and
anomalous points via clustering, distance metrics,
or density estimation. These approaches utilize
statistical learning and data mining algorithms to
automatically learn normal behavioral patterns
from historical data and identify anomalies that
deviate from these patterns. Classical
unsupervised algorithms include distance-based
methods, density-based methods, and one-class
classification methods.
(1) Distance-based Methods: These methods
identify anomalies by measuring the distance
between a new observation and representative
samples (e.g., centroids or cluster centers).
Points with excessive distances are considered
anomalies. Reference [9] proposes a distance-
based method using KNN (K-Nearest Neighbors)
to analyze and detect anomalies in wireless
sensor network data. However, such methods
often suffer from high computational costs and
low efficiency, making them infeasible in
complex scenarios.
(2) Density-based Methods: Using local density
as a criterion, these methods assume that normal
data is densely distributed in the feature space,
while anomalies are sparse. A representative
algorithm is the Local Outlier Factor (LOF),
which computes the local density deviation of
each point relative to its neighbors. If a point's
local density is significantly lower than that of
its neighbors, it is judged as an anomaly.
(3) Clustering-based Methods: Algorithms such
as K-Means or DBSCAN operate on the
assumption that normal data belongs to large
clusters, whereas anomalous data does not
belong to any cluster or forms very small ones.
Reference [10] applies K-Means clustering to
network traffic anomaly detection. The study
utilizes K-Means to analyze NetFlow records.
The algorithm first clusters normal traffic
patterns and detects anomalies (e.g., DoS attacks
or port scanning) by calculating the distance of
new traffic to these cluster centers. The paper
demonstrates how clustering distance thresholds
effectively distinguish normal traffic fluctuations
from malicious attacks.
(4) Classification-based Methods (One-Class):
Algorithms such as One-Class SVM (OCSVM)
and Support Vector Data Description (SVDD)
detect anomalies by fitting a hyperplane or

hypersphere in the feature space that
encompasses normal data. OCSVM and SVDD
do not require anomalous samples for training;
they build models based solely on normal data,
making them highly suitable for anomaly
detection tasks. Reference [11] proposes a
DBSCAN ensemble method utilizing the internal
structure of time series for adaptive parameter
selection. Experiments on the Yahoo dataset
indicate that this strategy effectively reduces
detection variance but exhibits high sensitivity
when handling imbalanced samples, limiting its
robustness.
(5) Isolation-based Methods: The most typical
algorithm is Isolation Forest (iForest). It
partitions data by randomly constructing binary
trees, based on the principle that anomalies are
easier to "isolate" (i.e., they have shorter path
lengths in the tree). Reference [12] applies
Isolation Forest to streaming data anomaly
detection. Addressing the characteristics of time-
series data streams, the paper proposes a Sliding
Window-based iForest scheme. By building
iTrees within sliding windows, the method
adapts to concept drift in data distribution and
rapidly detects anomalies in the current window.
The study proves that the isolation mechanism
possesses high computational efficiency when
processing high-speed, dynamic time-series data.
In supervised scenarios, if historically labeled
anomaly samples exist, anomaly detection can
be treated as a classification problem using
traditional classifiers (e.g., SVM, Decision Trees,
Neural Networks). However, in practice,
anomaly samples are scarce and unevenly
distributed, making fully supervised methods
impractical. Consequently, semi-supervised or
weakly supervised methods have emerged, such
as synthesizing minority anomaly samples via
data augmentation or employing active learning
to focus on data near the decision boundaries.
Overall, traditional machine learning methods
can capture more complex relationships
compared to statistical methods. For instance,
Clustering and Principal Component Analysis
(PCA) can be used for dimensionality reduction
and pattern extraction in multivariate data,
detecting anomalies based on reconstruction
error or principal component limits. Similarly, in
network traffic monitoring, feature vectors can
be extracted from time series and K-Means
applied, where outlier cluster centers correspond
to anomalous patterns. The disadvantage is that
these methods often ignore the temporal
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dependency of time series, treating data as
independent points; their effectiveness degrades
in extremely high-dimensional feature spaces.
Furthermore, in high-dimensional cases, they
may face the "curse of dimensionality," causing
distance metrics to fail and density estimation to

become difficult. As system complexity
increases, the effectiveness of traditional
methods in multivariate scenarios drops
significantly, prompting researchers to turn to
more powerful models like deep learning.

Table 1. Machine Learning-Based Time-Series Anomaly Detection
Model Name Advantageous Scenarios Limitations
KNN Simple logic; High computational cost; Low efficiency;
LOF (Local
Outlier Factor)

Identifying "local outliers" that are sparse
relative to neighbors but not global extremes

Density estimation becomes difficult in high-
dimensional spaces

K-Means /
DBSCAN

Distinguishing normal fluctuations from
attacks

Assumes normal data belongs to large, spherical
clusters; Ignores temporal dependencies

OCSVM /
SVDD

Novelty Detection; Training requires only
normal samples

Ignores time dependencies;

Isolation
Forest

High computational efficiency; variable correlations compared to deep learning
models

4.3 Classification of Time-Series Anomaly
Detection Based on Deep Learning
Leveraging powerful feature extraction
capabilities—particularly the ability to capture
non-linearities and long-range dependencies—
deep learning has made substantial strides in
multivariate time-series anomaly detection. It
has demonstrated exceptional performance in
fields such as financial risk control,
cybersecurity, and industrial equipment fault
diagnosis. Based on the learning paradigm of the
model, deep learning-based anomaly detection
methods can be categorized into Reconstruction-
based models, Prediction-based models, and
Hybrid models.
4.3.1 Reconstruction-based Anomaly Detection
Models
Reconstruction-based models operate by
encoding input time-series data into a low-
dimensional latent space and subsequently
reconstructing the original data via decoding.
The underlying assumption is that a model
trained on normal data can effectively compress
and restore normal samples, whereas it will fail
to accurately reconstruct unseen anomalous
samples.
These models utilize deep neural networks to
learn low-dimensional representations of time-
series data. If the input sequence conforms to the
normal patterns learned during training, the
model yields a low reconstruction error;
conversely, anomalous sequences deviating from
normal patterns result in significantly higher
errors, which serve as the basis for anomaly
detection. Typical models include Autoencoders
(AE) and their variants. An AE employs an

encoder network to map multivariate time series
into a latent space and a decoder network to
reconstruct them. Malhotra et al. (2016) [13]
pioneered the use of LSTM-based autoencoders
for multi-sensor anomaly detection, training the
model to reconstruct normal states and using
reconstruction error to detect various anomaly
types. Numerous subsequent studies have
adopted reconstruction error as a standard
anomaly score.
To enhance the ability to model complex
distributions, Variational Autoencoders (VAE)
were introduced. In the encoding phase, VAEs
generate random variables following a prior
distribution, incorporating stochasticity and
regularization to learn the probability
distribution of the data. OmniAnomaly (Su et al.,
2019) [5] is the first multivariate time-series
anomaly detection model to utilize Stochastic
Recurrent Neural Networks (SRNN)—
introducing temporal dependencies into VAEs. It
models temporal dependencies in the latent
space via GRU networks and evaluates
anomalies using the probability of the
reconstructed sequence, effectively
characterizing the temporal correlation of
stochastic variables. This innovation improved
performance on complex time series (e.g.,
periodic patterns superimposed with noise).
Furthermore, some studies have integrated
attention mechanisms to improve precision. For
instance, MSCRED [14] utilizes multi-scale
convolution and recurrent networks to extract
feature correlations at different granularities,
incorporating attention mechanisms to diagnose
anomalies of varying severities effectively.
Another direction for reconstruction models
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involves integrating Generative Adversarial
Networks (GANs) to enhance stability and
reconstruction capability. A representative
model, DAGMM [15], jointly trains a deep
autoencoder and a Gaussian Mixture Model
(GMM), achieving end-to-end optimization for
dimensionality reduction and density estimation.
While this ensures critical information is
preserved, DAGMM relies on standard
autoencoders and can suffer from local optima
and high computational costs. Consequently,
improved methods such as USAD [16] (Audibert
et al., 2020) utilize adversarial training to boost
the stability and speed of the autoencoder.
Similarly, MAD-GAN [17] employs an
adversarial framework where both the generator
and discriminator are constructed using LSTMs
to simultaneously capture temporal patterns and
inter-variable interactions. While GAN-based
models can learn complex distributions and
discover hard-to-reconstruct anomalies via
discriminator feedback, they often face
instability issues (e.g., gradient vanishing or
mode collapse). Subsequent research, such as
TADGAN [18], has introduced techniques like
Wasserstein loss and cycle consistency to
mitigate these issues.
Overall, the advantage of reconstruction-based
models lies in their ability to perform
unsupervised learning using only normal data,
automatically extracting key structural features
with high sensitivity to out-of-distribution
anomalies. Their disadvantage is the potential
failure to reconstruct all complex patterns and
the lack of interpretability regarding the
reconstruction error itself. For highly non-linear
multivariate sequences, simple autoencoders
have limited capacity, whereas increasing
capacity (via more layers or complex units)
increases training difficulty and the risk of
overfitting to anomalies. Thus, balancing
generalization ability with reconstruction
accuracy remains a key research direction.
4.3.2 Prediction-based Anomaly Detection
Models
Prediction-based models utilize autoregressive
principles to predict the next timestamp based on
a historical window, using the prediction error as
the anomaly score. Typical models include
LSTM, GRU, and CNN. If the prediction error
exceeds a certain threshold, the behavior at the
current moment is deemed to deviate from
historical laws and is flagged as anomalous. The
core of these methods is to train a time-series

forecasting model that achieves high accuracy
on normal patterns; deviations result in
significant residual spikes.
LSTM-based methods are among the most
widely applied. Hundman et al. [6] proposed
using multi-layer LSTMs for sequence
prediction on NASA spacecraft telemetry data,
designing a non-parametric dynamic
thresholding (NDT) mechanism. This method
(LSTM-NDT) adapts to residual distributions
without manual threshold setting. However, it
predicts only one dimension at a time, limiting
its performance in high-dimensional, coupled
scenarios. To address this, hybrid approaches
like LGMAD [19] combine LSTM with GMM,
using LSTM for temporal features and GMM for
low-dimensional feature distribution modeling,
thereby considering both temporal dynamics and
variable correlations.
Convolution-based models, such as DeepAnt
[20], use CNNs to automatically learn feature
representations from time-series segments for
prediction. Compared to RNNs, CNNs offer
high parallel computing efficiency and excel at
extracting local patterns. Architectures like
Temporal Convolutional Networks (TCN) utilize
causal and dilated convolutions to expand the
receptive field, capturing long-range
dependencies. TCNs often outperform traditional
CNNs by learning multi-granular features. The
limitation of CNNs lies in the finite kernel size,
making global dependency modeling difficult,
though this is partially mitigated by stacking
layers.
Transformer-based models rely on self-attention
mechanisms suitable for long-range
dependencies. TimesNet [21] innovatively
transforms time series into a 2D frequency
domain, applying FFT to capture periodic
components and 2D convolution for feature
extraction. This integrates frequency-domain
information into the prediction framework,
enhancing generalization on complex periodic
and trending sequences. Transformers and their
hybrids represent the state-of-the-art, achieving
record performance on datasets like SMD and
SWaT.
Overall, prediction models directly exploit
temporal dependencies and provide intuitive
anomaly metrics via errors. They are particularly
sensitive to point anomalies (sudden
spikes/drops). However, they require
comprehensive training on normal patterns;
otherwise, unseen normal modes may generate
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false positives. Additionally, performance
depends heavily on prediction accuracy, which is
susceptible to noise. In multivariate scenarios,
single-variable prediction ignores inter-variable
linkages, while joint prediction increases
complexity. Efficiently integrating multivariate
information remains a challenge.
4.3.3 Hybrid Reconstruction and Prediction
Models
Single prediction or reconstruction models often
exhibit limitations. Hybrid models employ
multi-task learning to enhance robustness: they
learn normal patterns via reconstruction while
capturing dynamic changes via prediction. This
dual approach improves the capability to capture
long-range dependencies and non-linear patterns.
TranAD [22] is a representative hybrid model
based on a Transformer encoder. It captures
long-range dependencies via self-attention while
introducing adaptive conditioning and
adversarial training. TranAD computes a
combined error from both reconstruction and
masked prediction tasks. Experiments show it
outperforms previous methods on multiple
datasets (F1 score increased by up to 17%) with
faster training. Its drawback lies in structural
complexity, as the introduction of meta-learning
and adversarial mechanisms may lead to over-
generalization.
Anomaly Transformer [23] introduces an
Anomaly-Attention mechanism. It hypothesizes
that anomalies exhibit different association
patterns with the global sequence compared to
normal points. By calculating the association
discrepancy between each time point and the
overall sequence, and employing a Min-Max

adversarial training strategy, it distinguishes
anomalies from normal patterns. This method
focuses on association differences rather than
direct prediction values, making it highly
effective for anomalies within a global context.
However, it incurs high computational costs for
long, high-dimensional sequences.
MTAD-GAT [24] applies Graph Attention
Networks to multivariate time series, separately
learning inter-variable and temporal
dependencies, and combines prediction and
reconstruction errors for detection. InterFusion
[25] uses hierarchical VAEs to model these
dependencies, also serving as a reconstruction-
fusion model. In summary, hybrid models
generally achieve higher detection accuracy
through multi-task synergy but introduce
increased model complexity and computational
overhead. Designing efficient fusion
mechanisms remains a critical research direction.

4.4 Classification Based on Time and
Frequency Domains
From the perspective of data transformation,
time-series anomaly detection can be divided
into Time-domain methods and Frequency-
domain methods. Most of the aforementioned
approaches analyze data directly in the time
domain. In contrast, frequency-domain methods
first transform the time series into the frequency
domain, utilizing spectral analysis to identify
anomalous patterns. Recently, hybrid methods
combining both domains have emerged to
leverage complementary information for
enhanced detection performance.

Table 2. Deep Learning-Based Time-Series Anomaly Detection
Model Name Advantageous Scenarios Limitations
LSTM-NDT /
LSTM-AE

Automatically learns main feature structures; Limited reconstruction capacity for highly complex
patterns; Potential reconstruction bias

OmniAnomalyCaptures uncertainty; Complex training
TranAD Strong robustness; Complex model structure
Anomaly
Transformer

Detecting anomalies based on global
associations rather than point values

High computational cost

TimesNet Handles complex multi-periodicity
effectively

Relies on the accuracy of period extraction via FFT

MTAD-GAT Explicitly models inter-variable dependencies
and temporal dependencies

Efficiency needs improvement on very large-scale
datasets

USAD/MAD-
GAN

Improving reconstruction stability (USAD); GAN training is notoriously unstable (Mode
Collapse, Gradient Vanishing)

4.4.1 Time-Domain Based Anomaly Detection
Models
Time-domain methods detect anomalies by
directly utilizing the variation of raw time-series
values over time. This category encompasses

nearly all the statistical, machine learning, and
deep learning models discussed previously. For
instance, using an ARIMA model to predict
future values and detecting residual anomalies is
a typical time-domain approach. Similarly,
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LSTM prediction models, Autoencoder (AE)
reconstruction models, and Transformer
attention models all perform modeling and
analysis on the sequence itself within the
temporal domain. In the time domain, the focus
is placed on features such as trends, seasonality,
and abrupt changes (mutations) of data points
along the time axis. If a data point at a certain
moment significantly deviates from the historical
normal range, it is flagged as an anomaly. The
advantage of these methods is that they are
intuitive and minimize information loss, as all
detections are performed directly on the raw
time series. However, pure time-domain
methods sometimes fail to detect anomalies that
manifest primarily as changes in frequency
components. For example, certain faults in
machine vibration signals may result in
increased energy in high-frequency components
without significant changes in the amplitude of
the time-domain waveform; in such cases, pure
time-domain methods may miss the detection.
4.4.2 Frequency-Domain Based Anomaly
Detection Models
Frequency-domain based anomaly detection
methods map raw time series into the frequency
domain to extract spectral features, thereby
identifying anomalous changes in periodic
components, shifts in frequency energy
distribution, or significant alterations in
frequency-domain structures. Borrowing from
Fourier analysis in signal processing, these
methods utilize tools such as the Discrete
Fourier Transform (DFT) or Fast Fourier
Transform (FFT) to decompose time-domain
signals into a series of sinusoidal frequency
components, enabling the observation of
periodic patterns, noise characteristics, and
frequency structures. The advantage of
frequency-domain methods lies in their ability to
reveal periodic anomalies and frequency shifts
that are difficult to observe directly in the time
domain, making them particularly suitable for
detecting periodic faults, changes in vibration
patterns, and periodic interference.
1) Fundamentals of Spectral Analysis and
Classical Methods. The core of frequency-
domain analysis lies in the extraction and
comparison of frequency components. FFT
allows for the rapid calculation of spectral
information from time-series signals,
discovering anomalies via changes in spectral
amplitude or phase. Reference [26] proposed the
Spectral Residual (SR) method, which first

introduced the concept of visual saliency into
time-series anomaly detection. By taking the
logarithm of the amplitude spectrum of the
Fourier-transformed sequence, calculating the
residual spectrum, and then transforming it back
to the time domain via inverse FFT, the method
generates an anomaly score sequence. SR
demonstrates robust response capabilities to
periodic patterns and frequency jumps, showing
better performance than traditional statistical
algorithms in Microsoft's online monitoring
services.
An important direction in frequency-domain
detection is the significance analysis of
frequency component changes. While traditional
Fourier analysis reveals frequency distribution, it
struggles to determine whether a change in a
specific frequency is statistically significant. To
address this, Reference [27] proposed applying a
selective inference framework to detect
frequency change points in time series,
calculating p-values for frequency domain
changes to measure statistical significance. This
approach not only detects genuine structural
changes in the frequency spectrum but also
reduces false positives, providing a more reliable
basis for anomaly judgment and aiding root
cause analysis in complex systems.
2) Fusion of Time-Domain and Frequency-
Domain. Since frequency-domain analysis alone
does not preserve the temporal precision of
anomaly occurrences (providing only statistical
information on overall frequency components),
it suffers from limitations in precisely locating
anomalies. Recently, numerous studies have
proposed frameworks that jointly model time
and frequency domain information to improve
detection accuracy and localization. Reference
[28] proposed Dual-TF, a representative model
that addresses the granularity difference between
the two domains using a nested sliding window
strategy: an outer window processes time-
domain information, while an inner window
constructs spectra for the corresponding period.
By aligning anomaly scores from both domains,
the frequency analysis results can be mapped
finely to each time point, reducing localization
errors caused by frequency granularity and
achieving significantly improved performance
on multiple benchmark datasets. Theoretically,
this method solves the alignment problem
between frequency-domain and time-domain
scores.
Reference [29] proposed TFCLNet, which
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adopts a dual-branch architecture to
simultaneously extract time and frequency
features, subsequently fusing this multi-domain
information for anomaly discrimination. The
frequency branch obtains spectral information
via frequency transformation to capture periodic
changes and frequency patterns, while the time
branch extracts temporal dependency features.
This design enables the model to recognize long-
term periodic anomalies while accounting for
short-term abrupt anomalies, enhancing overall
accuracy and robustness.
Similarly emphasizing a time-frequency joint
strategy is TFAD [30]. This architecture designs
modules for time-series decomposition and time-
frequency transformation, extracting complete
features of normal sequences by utilizing both
time-domain prediction and frequency-domain
analysis to perform anomaly judgment under
multi-task conditions. By combining features
from both domains in its structural design,
TFAD possesses stronger discriminative power
for pattern anomalies, demonstrating distinct
advantages when data contains complex external
periodic variations.
In adversarial environments, anomalous data
bias and distribution drift can affect model
training. TFMAE [31] employs a dual-channel
strategy with time-domain masking and
frequency-domain masking within an
autoencoder architecture to pre-suppress
potential anomalies, thereby preventing
anomalous samples from interfering with the
learning of normal patterns. Furthermore, by
replacing traditional reconstruction error with a
contrastive learning objective, TFMAE achieves
higher robustness regarding frequency features
and has achieved state-of-the-art results on
multiple real-world multivariate datasets (e.g.,
SWaT, SMD, SMAP, MSL).
3) Deep Learning Enhanced Frequency-Domain
Models. To fully leverage frequency information
and the expressive power of deep learning,
recent research has incorporated frequency
features into neural networks. The F-SE-LSTM
[32] model first constructs a frequency-domain
matrix representation using FFT, extracts weight
relationships within and between frequency
channels via a Squeeze-and-Excitation (SE)
network, and then combines this with LSTM to
learn temporal dependencies. Experimental
results show that this structure better
distinguishes between normal and anomalous
patterns on benchmarks like Yahoo Webscope

S5 and NAB, improving both accuracy and
efficiency.
Models based on deep attention mechanisms
also play a significant role. FDTAD [33]
introduces frequency-domain augmentation and
time-series decomposition mechanisms into a
standard Transformer architecture, enabling the
model to simultaneously focus on long-term
temporal dependencies and frequency changes,
thereby improving generalization on drifting
data.
4) Fine-grained Frequency Features and
Channel-Aware Mechanisms. In multivariate
scenarios, frequency-domain correlations
between different variable channels are crucial
clues for identifying complex anomalies.
CATCH [34] proposes decomposing the
frequency domain into multiple "frequency
patches" and introduces a Channel Fusion
Module (CFM) to perceive spectral associations
across different channels. Through patch-level
mask generation and attention mechanisms, the
model automatically learns the most relevant
frequency features between channels, improving
the identification of fine-grained frequency
changes and local anomalies. This method has
demonstrated superior performance on various
real and synthetic datasets and represents a
typical approach for comprehensively
considering channel relationships in multivariate
frequency-domain detection.
5) Frequency Models for Multi-Pattern
Normality Learning. In complex systems like
industrial and cloud services, normal patterns
under different services or states may differ
significantly, making it difficult for a single
model to capture all of them. Addressing this,
References [35] proposed MACE (Multi-Pattern
Normalities in the Frequency Domain). This
method establishes normal subspaces for
different services or patterns in the frequency
domain and detects anomalies by measuring the
distance between observed data and these
subspaces. This approach not only unifies the
handling of multiple normal patterns but also
significantly improves efficiency by exploiting
the sparsity and parallelism of frequency
features. To enhance the detection of short-term
anomalies, Peak Convolution and Valley
Convolution mechanisms were introduced,
improving sensitivity to transient anomalies in
industrial monitoring.
In summary, frequency-domain based MTSAD
methods have developed rapidly—from
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traditional Fourier transforms and wavelet
analysis to frequency-domain enhanced models
incorporating deep learning, and further to time-
frequency fusion and adversarial learning
mechanisms. These diverse methods have
merged to form a research direction that
balances frequency features, temporal
dependencies, and complex pattern modeling.

They exhibit unique advantages in revealing
periodic anomalies, detecting spectral change
points, and modeling multi-pattern normal
behaviors, providing solid technical support for
improving the accuracy and robustness of
anomaly detection in industrial monitoring, fault
diagnosis, and complex systems.

Table 3: Frequency-Domain Based Time-Series Anomaly Detection Models (Note: Please insert
your table here)

Model Name Advantageous Scenarios Limitations
TFCLNet Environments with severe distribution shift and

high noise levels
Computational complexity can be
significantly high

TFMAE Scenarios where training data contains a large
number of unknown anomalies

Requires precise tuning of the masking ratio

FDTAD IoT sensors and systems with distinct physical
laws/principles

Decomposition effectiveness depends on the
prominence of periodicity

CATCH Complex CPS (Cyber-Physical Systems) with a
massive number of sensors (>100)

Complex optimization process (e.g., bi-level
optimization)

MACE Cloud services with high real-time requirements
and diverse patterns

May sacrifice subtle local features to gain
processing speed

Dual-TF Tasks requiring precise identification of
anomaly onset and offset

Complex window alignment logic

Yamada SI High-stakes domains (Healthcare or Finance)
requiring P-value reporting

Calculating P-values may incur additional
computational overhead

4.5 Comparative Summary of Different
Methods
Synthesizing the classifications above, different
methods have distinct applicable scenarios.
Statistical methods are simple and fast but rely
on strong assumptions; machine learning
methods are flexible but require feature
engineering; deep learning methods offer high
precision but incur large training overheads;
frequency-domain methods excel at periodic
analysis, while time-domain methods are
superior for trend detection. The aforementioned
methods have been validated on public datasets
such as SMAP, MSL, SMD, and SWaT. Among
them, NASA's SMAP and MSL satellite
telemetry data, the secure water treatment
system SWaT data, and the server machine
dataset SMD are widely used as benchmarks. It
can be observed that early methods (e.g., LSTM-
NAT, DAGMM) proposed solutions targeting
either time-series prediction or deep
compression individually, whereas, with
research progression, models have gradually
fused multiple mechanisms (e.g., OmniAnomaly
combining VAE and RNN; TranAD and
Anomaly Transformer combining reconstruction,
prediction, and attention mechanisms). The
overall trend indicates that while model

complexity is increasing, detection performance
and robustness are also improving significantly.

5. Conclusion and Future Prospects
Multivariate Time-Series Anomaly Detection
(MTSAD) has made significant progress in
industrial equipment monitoring applications,
particularly on datasets such as SMAP, MSL,
SMD, and SWaT. As the complexity of
industrial equipment monitoring continues to
increase, traditional statistical and machine
learning methods have gradually exposed
deficiencies in handling high-dimensional, non-
linear, and multivariate data, whereas the
emergence of deep learning methods has
significantly enhanced detection accuracy and
robustness. Statistical-based methods, such as
ARIMA and control charts, while simple to
implement and computationally efficient, rely on
stationarity and linearity assumptions. They fail
to effectively capture complex patterns,
performing poorly especially in high-
dimensional and non-linear data scenarios.
Machine Learning-based methods, such as
distance-based, density-based, and one-class
classification methods, can automatically learn
data patterns without supervision. They are
widely used in industrial applications—
algorithms like LOF and Isolation Forest are
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particularly suitable for variable and complex
data—but still require manual feature setting or
distance metrics and face the "curse of
dimensionality" in high-dimensional data.
Deep Learning-based methods, especially
reconstruction-based, prediction-based, and
reconstruction-prediction hybrid models, have
significantly improved the capability to detect
complex temporal patterns. Neural network
models such as Autoencoders, LSTM, GRU, and
Transformers effectively learn non-linear
features and long-range dependencies, making
them particularly suitable for detecting dynamic
anomalies in industrial monitoring. In particular,
hybrid models like TranAD and Anomaly
Transformer, which combine reconstruction
error and prediction residual, can simultaneously
capture static patterns and dynamic changes in
time-series data, further elevating anomaly
detection precision.
Frequency-domain methods, as an emerging
direction, effectively capture periodic or
frequency component anomalies by analyzing
data in the frequency domain. Hybrid methods
combining time and frequency domains (e.g.,
Dual-TF and CATCH) demonstrate superior
anomaly detection capabilities, proving more
effective than pure time-domain methods,
especially when dealing with periodic faults.
In conclusion, deep learning methods—
particularly hybrid models based on
reconstruction and prediction—have become the
mainstream approach in the field of time-series
anomaly detection, demonstrating greater
flexibility and accuracy. However, in
multivariate time-series data, as data
dimensionality increases, model complexity and
computational overhead also rise. Therefore,
balancing model complexity with detection
efficiency, especially in real-time monitoring
scenarios, remains a hotspot for current research.
Future research could focus on: enhancing
model interpretability, which is crucial for
decision support in industrial scenarios;
integrating more data sources (such as frequency
domain, graph structures, etc.) to strengthen
model robustness and generalization; and
developing more efficient training methods to
reduce dependency on massive labeled data and
computational resources. Continuous innovation
in MTSAD methods will contribute to
improving the intelligence level of industrial
equipment monitoring systems, driving
developments in equipment fault diagnosis and

production efficiency optimization.
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